Citation: Endong YANG, Haoze TIAN, Ke ZHANG, Yongbing LOU. Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369 shu

Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays

  • Corresponding author: Yongbing LOU, lou@seu.edu.cn
  • Received Date: 8 October 2023
    Revised Date: 22 January 2024

Figures(7)

  • Using an interface engineering strategy, we successfully synthesized a core-shell nano-flower array of CuCo2O4/NiFe-layered bimetallic hydroxide (LDH) on nickel foam (NF) (CuCo2O4/NiFe-LDH@NF). The research indicates that electrons undergo transfer across the coupled interface of CuCo2O4 and NiFe-LDH, resulting in the enrichment of the CuCo2O4 core in electron density and thereby enhancing reaction kinetics. The amorphous NiFe-LDH shell not only provides additional channels for electron/material transport and increases active sites but also effectively shields the core CuCo2O4 from strong alkali corrosion during the oxygen evolution reaction (OER) in electrocatalysis. Therefore, when employed as an OER catalyst in a 1.0 mol·L-1 KOH solution, CuCo2O4/NiFe-LDH@NF required only a low overpotential of 191 mV to achieve a current density of 10 mA·cm-2 and a low Tafel slope of 31 mV·dec-1. Furthermore, CuCo2O4/NiFe-LDH@NF demonstrated stability in catalytic performance, crystal structure, morphological structure, and composition during prolonged operation.
  • 加载中
    1. [1]

      Han J Y, Guan J Q. Multicomponent transition metal oxides and (oxy) hydroxides for oxygen evolution[J]. Nano Res., 2022,16:1913-1966.

    2. [2]

      Zhang Q, Lian K, Liu Q, Qi G C, Zhang S S, Luo J, Liu X J. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries[J]. J. Colloid Interface Sci., 2023,646:844-854. doi: 10.1016/j.jcis.2023.05.074

    3. [3]

      Zhang K, Jia J, Tan L, Qi S P, Li B L, Chen J X, Li J, Lou Y B, Guo Y Z. Morphological and electronic modification of NiS2 for efficient supercapacitors and hydrogen evolution reaction[J]. J. Power Sources, 2023,577233239. doi: 10.1016/j.jpowsour.2023.233239

    4. [4]

      Liang Q N, Chen J M, Wang F L, Li Y W. Transition metal-based metal-organic frameworks for oxygen evolution reaction[J]. Coord. Chem. Rev., 2020,424213488. doi: 10.1016/j.ccr.2020.213488

    5. [5]

      He R Z, Huang X Y, Feng L G. Recent progress in transition-metal sulfide catalyst regulation for improved oxygen evolution reaction[J]. Energy Fuels, 2022,36(13):6675-6694. doi: 10.1021/acs.energyfuels.2c01429

    6. [6]

      Zhang Q, Lian K, Qi G C, Zhang S, Liu Q, Luo Y, Luo J, Liu X. High-entropy alloys in water electrolysis: Recent advances, fundamentals, and challenges[J]. Sci. China Mater., 2023,66(5):1681-1701. doi: 10.1007/s40843-022-2379-8

    7. [7]

      Zhang K, Jia J, Yang E D, Qi S P, Tian H, Chen J X, Li J, Lou Y B, Guo Y Z. Work-function-induced electron rearrangement of in-plane FeP@CoP heterojunction enhances all pH range and alkaline seawater hydrogen evolution reaction[J]. Nano Energy, 2023,114108601. doi: 10.1016/j.nanoen.2023.108601

    8. [8]

      Zhang K, Yang E D, Zheng Y P, Yu D H, Chen J X, Lou Y B. Robust and hydrophilic Mo-NiS@NiTe core-shell heterostructure nanorod arrays for efficient hydrogen evolution reaction in alkaline freshwater and seawater[J]. Appl. Surf. Sci., 2023,637157977. doi: 10.1016/j.apsusc.2023.157977

    9. [9]

      Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma J M. Transition metal carbides in electrocatalytic oxygen evolution reaction[J]. Chin. Chem. Lett., 2021,32(1):291-298. doi: 10.1016/j.cclet.2020.02.018

    10. [10]

      Wang H X, Zhang K H L, Hofmann J P, De La Pena O'shea V A, Oropeza F E. The electronic structure of transition metal oxides for oxygen evolution reaction[J]. J. Mater. Chem. A, 2021,9(35):19465-19488. doi: 10.1039/D1TA03732C

    11. [11]

      Yan D F, Xia C F, Zhang W J, Hu Q, He C X, Xia B Y, Wang S Y. Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction[J]. Adv. Energy Mater., 2022,12(45)2202317. doi: 10.1002/aenm.202202317

    12. [12]

      Zhang H, Luo Y, Chu P K, Liu Q, Liu X, Zhang S S, Luo J, Wang X Z, Hu G Z. Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting[J]. J. Alloy. Compd., 2022,922166113. doi: 10.1016/j.jallcom.2022.166113

    13. [13]

      Vazhayil A, Vazhayal L, Thomas J, Ashok S C, Thomas N. A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction[J]. Appl. Surf. Sci. Adv., 2021,6100184. doi: 10.1016/j.apsadv.2021.100184

    14. [14]

      Hao Z M, Liu D P, Ge H Y, Zuo X T, Feng X L, Shao M Z, Yu H H, Yuan G B, Zhang Y. Preparation of quaternary FeCoMoCu metal oxides for oxygen evolution reaction[J]. Chem. Res. Chin. Univ., 2022,38(3):823-828. doi: 10.1007/s40242-022-2040-y

    15. [15]

      Bera K, Karmakar A, Kumaravel S, Sankar S S, Madhu R, Dhandapani H N, Nagappan S, Kundu S. Vanadium-doped nickel cobalt layered double hydroxide: A high-performance oxygen evolution reaction electrocatalyst in alkaline medium[J]. Inorg. Chem., 2022,61(10):4502-4512. doi: 10.1021/acs.inorgchem.2c00093

    16. [16]

      Zeng F, Mebrahtu C, Liao L F, Beine A K, Palkovits R. Stability and deactivation of OER electrocatalysts: A review[J]. J. Energy Chem., 2022,69:301-29. doi: 10.1016/j.jechem.2022.01.025

    17. [17]

      Wang H Y, Chen L Y, Tan L, Liu X, Wen Y H, Hou W G, Zhan T R. Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting[J]. J. Colloid Interface Sci., 2022,613:349-57. doi: 10.1016/j.jcis.2022.01.044

    18. [18]

      Gao X H, Zhang H X, Li Q G, Yu X G, Hong Z L, Zhang X W, Liang C D, Lin Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting[J]. Angew. Chem. Int. Ed., 2016,55(21):6290-6294. doi: 10.1002/anie.201600525

    19. [19]

      Zhang L J, Yuan H C, Li X, Wang Y. Hydrothermal synthesis of NiCo2O4@NiCo2O4 core-shell nanostructures anchored on Ni foam for efficient oxygen evolution reactions catalysts[J]. Coatings, 2022,12(9)1240. doi: 10.3390/coatings12091240

    20. [20]

      Long X, Wang Z L, Xiao S, An Y M, Yang S H. Transition metal based layered double hydroxides tailored for energy conversion and storage[J]. Mater. Today, 2016,19(4):213-226. doi: 10.1016/j.mattod.2015.10.006

    21. [21]

      Wang Y Y, Yan D F, El Hankari S, Zou Y Q, Wang S Y. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting[J]. Adv. Sci., 2018,5(8)1800064. doi: 10.1002/advs.201800064

    22. [22]

      Liu Y P, Liang X, Gu L, Zhang Y, Li G D, Zou X X, Chen J S. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6 000 hours[J]. Nat. Commun., 2018,92609. doi: 10.1038/s41467-018-05019-5

    23. [23]

      Lu X Y, Zhao C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities[J]. Nat. Commun., 2015,66616. doi: 10.1038/ncomms7616

    24. [24]

      Wang S Y, Wang H P, Chen S M, Cheung K K K, Wong H F, Leung C W, Zapien J A. Hydrochloric acid etching induced flower-like NiFe-layered double hydroxide as efficient electrocatalyst for oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2023,48:17045-1705. doi: 10.1016/j.ijhydene.2023.01.119

    25. [25]

      Song S, Fu Y, Yin F, Zhang Y, Ma J, Liu Y, Ren J, Ye W, Ma R. NiFe-based tungstate@layered double hydroxide heterostructure supported on graphene as efficient oxygen evolution reaction catalyst[J]. Mater. Today Chem., 2023,28101369. doi: 10.1016/j.mtchem.2022.101369

    26. [26]

      Fauzi A, Geng S, Tian F Y, Liu Y Q, Li H B, Yu Y S, Li J M, Yang W W. NiFe-LDH@Ni3S2 supported on nickel foam as highly active electrocatalysts for oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2023,48(4):1370-1379. doi: 10.1016/j.ijhydene.2022.09.305

    27. [27]

      Zhang K, Yang E D, Zheng Y Y, Wang S Y, Xie Y H, Chen J X, Lou Y B, Song L L. Work-function-induced interfacial built-in electric field optimized electronic structure of V-CoSx@NiTe as high capacity and robust electrode for supercapacitors[J]. Chem. Eng. J., 2024,480148030. doi: 10.1016/j.cej.2023.148030

    28. [28]

      Chen W Y, Zhang X M, Mo L E, Zhang Y S, Chen S G, Zhang X X, Hu L H. NiCo2S4 quantum dots with high redox reactivity for hybrid supercapacitors[J]. Chem. Eng. J., 2020,388124109. doi: 10.1016/j.cej.2020.124109

    29. [29]

      Song Y B, Guo Y M, Qi S P, Zhang K, Yang J F, Li B N, Chen J X, Zhao Y X, Lou Y B. Cu7S4/MnIn2S4 heterojunction for efficient photo-catalytic hydrogen generation[J]. J. Alloy. Compd., 2021,884161035. doi: 10.1016/j.jallcom.2021.161035

    30. [30]

      Guo X X, Hu B, Wang K, Wang H H, Li B L, Guo M, Tian Y, Zhang R X, Shi S S, Han Y F. Cu embedded Co oxides and its Fenton-like activity for metronidazole degradation over a wide pH range: Active sites of Cu doped Co3O4 with {112} exposed facet[J]. Chem. Eng. J., 2022,435132910. doi: 10.1016/j.cej.2021.132910

    31. [31]

      Tian H Z, Zhang K, Feng X A, Chen J X, Lou Y B. Self-supported CoMoO4/NiFe-LDH core-shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution[J]. Dalton Trans., 2022,51(36):13762-13770. doi: 10.1039/D2DT02167F

    32. [32]

      Dastafkan K, Wang S H, Rong C L, Meyer Q, Li Y B, Zhang Q, Zhao C A. Cosynergistic molybdate oxo-anionic modification of feni-based electrocatalysts for efficient oxygen evolution reaction[J]. Adv. Funct. Mater., 2022,32(5)2107342. doi: 10.1002/adfm.202107342

    33. [33]

      Sun S G, Sun Y M, Zhou Y, Shen J J, Mandler D, Neumann R, Xu Z J. Switch of the rate-determining step of water oxidation by spin-selected electron transfer in spinel oxides[J]. Chem. Mater., 2019,31(19):8106-8111. doi: 10.1021/acs.chemmater.9b02737

    34. [34]

      Ren X, Wu T Z, Sun Y M, Li Y, Xian G Y, Liu X H, Shen C M, Gracia J, Gao H J, Yang H T, Xu Z J. Spin-polarized oxygen evolution reaction under magnetic field[J]. Nat. Commun., 2021,12(1)2608. doi: 10.1038/s41467-021-22865-y

    35. [35]

      Lv J J, Wang L M, Li R S, Zhang K Y, Zhao D F, Li Y Q, Li X J, Huang X B, Wang G. Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline-amorphous NiFe-LDH for oxygen evolution reaction[J]. ACS Catal., 2021,11(23):14338-14351. doi: 10.1021/acscatal.1c03960

    36. [36]

      Wang Z Q, Zeng S, Liu W H, Wang X W, Li Q W, Zhao Z G, Geng F X. Coupling molecularly ultrathin sheets of nife-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity[J]. ACS Appl. Mater. Interfaces, 2017,9(2):1488-1495. doi: 10.1021/acsami.6b13075

    37. [37]

      Wang S G, Li J H, Fang H, Li B Y, Wang G M, Gao Y. 3D core-shell structured NiFe layered double hydroxide with NiCo2O4 as an efficient electrocatalysts for oxygen evolution reaction[J]. J. Phys. Chem. Solids, 2022,166110730. doi: 10.1016/j.jpcs.2022.110730

    38. [38]

      Dong Q B, Shuai C, Mo Z L, Liu N J, Liu G G, Wang J, Pei H B, Jia Q Q, Liu W T, Guo X D. CeO2 nanoparticles@ NiFe-LDH nanosheet heterostructure as electrocatalysts for oxygen evolution reaction[J]. J. Solid State Chem., 2021,296121967. doi: 10.1016/j.jssc.2021.121967

    39. [39]

      Sirisomboonchai S, Li S, Yoshida A, Li X M, Samart C, Abudula A, Guan G. Fabrication of NiO microflake@NiFe-LDH nanosheet heterostructure electrocatalysts for oxygen evolution reaction[J]. ACS Sustain. Chem. Eng., 2019,7(2):2327-2334. doi: 10.1021/acssuschemeng.8b05088

    40. [40]

      Arshad F, Munir A, Tahir A, Hussain S Z, Jilani A, Hussain A, Ullah N, Sher F, Hussain I. Microwave-assisted growth of spherical core-shell NiFe LDH@CuxO nanostructures for electrocatalytic water oxidation reaction[J]. Int. J. Hydrog. Energy, 2023,48(12):4719-4727. doi: 10.1016/j.ijhydene.2022.10.252

    41. [41]

      Xiao C L, Li Y B, Lu X Y, Zhao C. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting[J]. Adv. Funct. Mater., 2016,26(20):3515-3523. doi: 10.1002/adfm.201505302

    42. [42]

      Chen H, Gao Y, Sun L C. Highly active three-dimensional NiFe/Cu2O nanowires/Cu foam electrode for water oxidation[J]. ChemSusChem, 2017,10(7):1475-1481. doi: 10.1002/cssc.201601884

    43. [43]

      Li X, Fan M L, Wei D N, Wang X L, Wang Y L. Core-shell NiO/C@NiFe-LDH nanocomposite as an efficient electrocatalyst for oxygen evolution reaction[J]. J. Electrochem. Soc., 2020,167(2)024501. doi: 10.1149/1945-7111/ab61eb

    44. [44]

      Que R H, Liu S, Yang Y, Pan Y Y. High catalytic performance of core-shell structure ZnCo2O4@NiFe LDH for oxygen evolution reaction[J]. Mater. Lett., 2021,298129982. doi: 10.1016/j.matlet.2021.129982

    45. [45]

      Wang S P, Wu J, Yin J W, Hu Q, Geng D S, Liu L M. Improved electrocatalytic performance in overall water splitting with rational design of hierarchical Co3O4@NiFe layered double hydroxide core-shell nanostructure[J]. ChemElectroChem, 2018,5(10):1357-1363. doi: 10.1002/celc.201800194

    46. [46]

      Yang H Y, Driess M, Menezes P W. Self-supported electrocatalysts for practical water electrolysis[J]. Adv. Energy Mater., 2021,11(39)2170153. doi: 10.1002/aenm.202170153

    47. [47]

      Sun J L, Xu C J, Chen H Y. A review on the synthesis of CuCo2O4-based electrode materials and their applications in supercapacitors[J]. J. Materiomics, 2021,7(1):98-126. doi: 10.1016/j.jmat.2020.07.013

  • 加载中
    1. [1]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    11. [11]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    12. [12]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    18. [18]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    19. [19]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    20. [20]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

Metrics
  • PDF Downloads(8)
  • Abstract views(624)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return