Citation: Endong YANG, Haoze TIAN, Ke ZHANG, Yongbing LOU. Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369 shu

Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays

  • Corresponding author: Yongbing LOU, lou@seu.edu.cn
  • Received Date: 8 October 2023
    Revised Date: 22 January 2024

Figures(7)

  • Using an interface engineering strategy, we successfully synthesized a core-shell nano-flower array of CuCo2O4/NiFe-layered bimetallic hydroxide (LDH) on nickel foam (NF) (CuCo2O4/NiFe-LDH@NF). The research indicates that electrons undergo transfer across the coupled interface of CuCo2O4 and NiFe-LDH, resulting in the enrichment of the CuCo2O4 core in electron density and thereby enhancing reaction kinetics. The amorphous NiFe-LDH shell not only provides additional channels for electron/material transport and increases active sites but also effectively shields the core CuCo2O4 from strong alkali corrosion during the oxygen evolution reaction (OER) in electrocatalysis. Therefore, when employed as an OER catalyst in a 1.0 mol·L-1 KOH solution, CuCo2O4/NiFe-LDH@NF required only a low overpotential of 191 mV to achieve a current density of 10 mA·cm-2 and a low Tafel slope of 31 mV·dec-1. Furthermore, CuCo2O4/NiFe-LDH@NF demonstrated stability in catalytic performance, crystal structure, morphological structure, and composition during prolonged operation.
  • 加载中
    1. [1]

      Han J Y, Guan J Q. Multicomponent transition metal oxides and (oxy) hydroxides for oxygen evolution[J]. Nano Res., 2022,16:1913-1966.

    2. [2]

      Zhang Q, Lian K, Liu Q, Qi G C, Zhang S S, Luo J, Liu X J. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries[J]. J. Colloid Interface Sci., 2023,646:844-854. doi: 10.1016/j.jcis.2023.05.074

    3. [3]

      Zhang K, Jia J, Tan L, Qi S P, Li B L, Chen J X, Li J, Lou Y B, Guo Y Z. Morphological and electronic modification of NiS2 for efficient supercapacitors and hydrogen evolution reaction[J]. J. Power Sources, 2023,577233239. doi: 10.1016/j.jpowsour.2023.233239

    4. [4]

      Liang Q N, Chen J M, Wang F L, Li Y W. Transition metal-based metal-organic frameworks for oxygen evolution reaction[J]. Coord. Chem. Rev., 2020,424213488. doi: 10.1016/j.ccr.2020.213488

    5. [5]

      He R Z, Huang X Y, Feng L G. Recent progress in transition-metal sulfide catalyst regulation for improved oxygen evolution reaction[J]. Energy Fuels, 2022,36(13):6675-6694. doi: 10.1021/acs.energyfuels.2c01429

    6. [6]

      Zhang Q, Lian K, Qi G C, Zhang S, Liu Q, Luo Y, Luo J, Liu X. High-entropy alloys in water electrolysis: Recent advances, fundamentals, and challenges[J]. Sci. China Mater., 2023,66(5):1681-1701. doi: 10.1007/s40843-022-2379-8

    7. [7]

      Zhang K, Jia J, Yang E D, Qi S P, Tian H, Chen J X, Li J, Lou Y B, Guo Y Z. Work-function-induced electron rearrangement of in-plane FeP@CoP heterojunction enhances all pH range and alkaline seawater hydrogen evolution reaction[J]. Nano Energy, 2023,114108601. doi: 10.1016/j.nanoen.2023.108601

    8. [8]

      Zhang K, Yang E D, Zheng Y P, Yu D H, Chen J X, Lou Y B. Robust and hydrophilic Mo-NiS@NiTe core-shell heterostructure nanorod arrays for efficient hydrogen evolution reaction in alkaline freshwater and seawater[J]. Appl. Surf. Sci., 2023,637157977. doi: 10.1016/j.apsusc.2023.157977

    9. [9]

      Wang H P, Zhu S, Deng J W, Zhang W C, Feng Y Z, Ma J M. Transition metal carbides in electrocatalytic oxygen evolution reaction[J]. Chin. Chem. Lett., 2021,32(1):291-298. doi: 10.1016/j.cclet.2020.02.018

    10. [10]

      Wang H X, Zhang K H L, Hofmann J P, De La Pena O'shea V A, Oropeza F E. The electronic structure of transition metal oxides for oxygen evolution reaction[J]. J. Mater. Chem. A, 2021,9(35):19465-19488. doi: 10.1039/D1TA03732C

    11. [11]

      Yan D F, Xia C F, Zhang W J, Hu Q, He C X, Xia B Y, Wang S Y. Cation defect engineering of transition metal electrocatalysts for oxygen evolution reaction[J]. Adv. Energy Mater., 2022,12(45)2202317. doi: 10.1002/aenm.202202317

    12. [12]

      Zhang H, Luo Y, Chu P K, Liu Q, Liu X, Zhang S S, Luo J, Wang X Z, Hu G Z. Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting[J]. J. Alloy. Compd., 2022,922166113. doi: 10.1016/j.jallcom.2022.166113

    13. [13]

      Vazhayil A, Vazhayal L, Thomas J, Ashok S C, Thomas N. A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction[J]. Appl. Surf. Sci. Adv., 2021,6100184. doi: 10.1016/j.apsadv.2021.100184

    14. [14]

      Hao Z M, Liu D P, Ge H Y, Zuo X T, Feng X L, Shao M Z, Yu H H, Yuan G B, Zhang Y. Preparation of quaternary FeCoMoCu metal oxides for oxygen evolution reaction[J]. Chem. Res. Chin. Univ., 2022,38(3):823-828. doi: 10.1007/s40242-022-2040-y

    15. [15]

      Bera K, Karmakar A, Kumaravel S, Sankar S S, Madhu R, Dhandapani H N, Nagappan S, Kundu S. Vanadium-doped nickel cobalt layered double hydroxide: A high-performance oxygen evolution reaction electrocatalyst in alkaline medium[J]. Inorg. Chem., 2022,61(10):4502-4512. doi: 10.1021/acs.inorgchem.2c00093

    16. [16]

      Zeng F, Mebrahtu C, Liao L F, Beine A K, Palkovits R. Stability and deactivation of OER electrocatalysts: A review[J]. J. Energy Chem., 2022,69:301-29. doi: 10.1016/j.jechem.2022.01.025

    17. [17]

      Wang H Y, Chen L Y, Tan L, Liu X, Wen Y H, Hou W G, Zhan T R. Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting[J]. J. Colloid Interface Sci., 2022,613:349-57. doi: 10.1016/j.jcis.2022.01.044

    18. [18]

      Gao X H, Zhang H X, Li Q G, Yu X G, Hong Z L, Zhang X W, Liang C D, Lin Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting[J]. Angew. Chem. Int. Ed., 2016,55(21):6290-6294. doi: 10.1002/anie.201600525

    19. [19]

      Zhang L J, Yuan H C, Li X, Wang Y. Hydrothermal synthesis of NiCo2O4@NiCo2O4 core-shell nanostructures anchored on Ni foam for efficient oxygen evolution reactions catalysts[J]. Coatings, 2022,12(9)1240. doi: 10.3390/coatings12091240

    20. [20]

      Long X, Wang Z L, Xiao S, An Y M, Yang S H. Transition metal based layered double hydroxides tailored for energy conversion and storage[J]. Mater. Today, 2016,19(4):213-226. doi: 10.1016/j.mattod.2015.10.006

    21. [21]

      Wang Y Y, Yan D F, El Hankari S, Zou Y Q, Wang S Y. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting[J]. Adv. Sci., 2018,5(8)1800064. doi: 10.1002/advs.201800064

    22. [22]

      Liu Y P, Liang X, Gu L, Zhang Y, Li G D, Zou X X, Chen J S. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6 000 hours[J]. Nat. Commun., 2018,92609. doi: 10.1038/s41467-018-05019-5

    23. [23]

      Lu X Y, Zhao C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities[J]. Nat. Commun., 2015,66616. doi: 10.1038/ncomms7616

    24. [24]

      Wang S Y, Wang H P, Chen S M, Cheung K K K, Wong H F, Leung C W, Zapien J A. Hydrochloric acid etching induced flower-like NiFe-layered double hydroxide as efficient electrocatalyst for oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2023,48:17045-1705. doi: 10.1016/j.ijhydene.2023.01.119

    25. [25]

      Song S, Fu Y, Yin F, Zhang Y, Ma J, Liu Y, Ren J, Ye W, Ma R. NiFe-based tungstate@layered double hydroxide heterostructure supported on graphene as efficient oxygen evolution reaction catalyst[J]. Mater. Today Chem., 2023,28101369. doi: 10.1016/j.mtchem.2022.101369

    26. [26]

      Fauzi A, Geng S, Tian F Y, Liu Y Q, Li H B, Yu Y S, Li J M, Yang W W. NiFe-LDH@Ni3S2 supported on nickel foam as highly active electrocatalysts for oxygen evolution reaction[J]. Int. J. Hydrog. Energy, 2023,48(4):1370-1379. doi: 10.1016/j.ijhydene.2022.09.305

    27. [27]

      Zhang K, Yang E D, Zheng Y Y, Wang S Y, Xie Y H, Chen J X, Lou Y B, Song L L. Work-function-induced interfacial built-in electric field optimized electronic structure of V-CoSx@NiTe as high capacity and robust electrode for supercapacitors[J]. Chem. Eng. J., 2024,480148030. doi: 10.1016/j.cej.2023.148030

    28. [28]

      Chen W Y, Zhang X M, Mo L E, Zhang Y S, Chen S G, Zhang X X, Hu L H. NiCo2S4 quantum dots with high redox reactivity for hybrid supercapacitors[J]. Chem. Eng. J., 2020,388124109. doi: 10.1016/j.cej.2020.124109

    29. [29]

      Song Y B, Guo Y M, Qi S P, Zhang K, Yang J F, Li B N, Chen J X, Zhao Y X, Lou Y B. Cu7S4/MnIn2S4 heterojunction for efficient photo-catalytic hydrogen generation[J]. J. Alloy. Compd., 2021,884161035. doi: 10.1016/j.jallcom.2021.161035

    30. [30]

      Guo X X, Hu B, Wang K, Wang H H, Li B L, Guo M, Tian Y, Zhang R X, Shi S S, Han Y F. Cu embedded Co oxides and its Fenton-like activity for metronidazole degradation over a wide pH range: Active sites of Cu doped Co3O4 with {112} exposed facet[J]. Chem. Eng. J., 2022,435132910. doi: 10.1016/j.cej.2021.132910

    31. [31]

      Tian H Z, Zhang K, Feng X A, Chen J X, Lou Y B. Self-supported CoMoO4/NiFe-LDH core-shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution[J]. Dalton Trans., 2022,51(36):13762-13770. doi: 10.1039/D2DT02167F

    32. [32]

      Dastafkan K, Wang S H, Rong C L, Meyer Q, Li Y B, Zhang Q, Zhao C A. Cosynergistic molybdate oxo-anionic modification of feni-based electrocatalysts for efficient oxygen evolution reaction[J]. Adv. Funct. Mater., 2022,32(5)2107342. doi: 10.1002/adfm.202107342

    33. [33]

      Sun S G, Sun Y M, Zhou Y, Shen J J, Mandler D, Neumann R, Xu Z J. Switch of the rate-determining step of water oxidation by spin-selected electron transfer in spinel oxides[J]. Chem. Mater., 2019,31(19):8106-8111. doi: 10.1021/acs.chemmater.9b02737

    34. [34]

      Ren X, Wu T Z, Sun Y M, Li Y, Xian G Y, Liu X H, Shen C M, Gracia J, Gao H J, Yang H T, Xu Z J. Spin-polarized oxygen evolution reaction under magnetic field[J]. Nat. Commun., 2021,12(1)2608. doi: 10.1038/s41467-021-22865-y

    35. [35]

      Lv J J, Wang L M, Li R S, Zhang K Y, Zhao D F, Li Y Q, Li X J, Huang X B, Wang G. Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline-amorphous NiFe-LDH for oxygen evolution reaction[J]. ACS Catal., 2021,11(23):14338-14351. doi: 10.1021/acscatal.1c03960

    36. [36]

      Wang Z Q, Zeng S, Liu W H, Wang X W, Li Q W, Zhao Z G, Geng F X. Coupling molecularly ultrathin sheets of nife-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity[J]. ACS Appl. Mater. Interfaces, 2017,9(2):1488-1495. doi: 10.1021/acsami.6b13075

    37. [37]

      Wang S G, Li J H, Fang H, Li B Y, Wang G M, Gao Y. 3D core-shell structured NiFe layered double hydroxide with NiCo2O4 as an efficient electrocatalysts for oxygen evolution reaction[J]. J. Phys. Chem. Solids, 2022,166110730. doi: 10.1016/j.jpcs.2022.110730

    38. [38]

      Dong Q B, Shuai C, Mo Z L, Liu N J, Liu G G, Wang J, Pei H B, Jia Q Q, Liu W T, Guo X D. CeO2 nanoparticles@ NiFe-LDH nanosheet heterostructure as electrocatalysts for oxygen evolution reaction[J]. J. Solid State Chem., 2021,296121967. doi: 10.1016/j.jssc.2021.121967

    39. [39]

      Sirisomboonchai S, Li S, Yoshida A, Li X M, Samart C, Abudula A, Guan G. Fabrication of NiO microflake@NiFe-LDH nanosheet heterostructure electrocatalysts for oxygen evolution reaction[J]. ACS Sustain. Chem. Eng., 2019,7(2):2327-2334. doi: 10.1021/acssuschemeng.8b05088

    40. [40]

      Arshad F, Munir A, Tahir A, Hussain S Z, Jilani A, Hussain A, Ullah N, Sher F, Hussain I. Microwave-assisted growth of spherical core-shell NiFe LDH@CuxO nanostructures for electrocatalytic water oxidation reaction[J]. Int. J. Hydrog. Energy, 2023,48(12):4719-4727. doi: 10.1016/j.ijhydene.2022.10.252

    41. [41]

      Xiao C L, Li Y B, Lu X Y, Zhao C. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting[J]. Adv. Funct. Mater., 2016,26(20):3515-3523. doi: 10.1002/adfm.201505302

    42. [42]

      Chen H, Gao Y, Sun L C. Highly active three-dimensional NiFe/Cu2O nanowires/Cu foam electrode for water oxidation[J]. ChemSusChem, 2017,10(7):1475-1481. doi: 10.1002/cssc.201601884

    43. [43]

      Li X, Fan M L, Wei D N, Wang X L, Wang Y L. Core-shell NiO/C@NiFe-LDH nanocomposite as an efficient electrocatalyst for oxygen evolution reaction[J]. J. Electrochem. Soc., 2020,167(2)024501. doi: 10.1149/1945-7111/ab61eb

    44. [44]

      Que R H, Liu S, Yang Y, Pan Y Y. High catalytic performance of core-shell structure ZnCo2O4@NiFe LDH for oxygen evolution reaction[J]. Mater. Lett., 2021,298129982. doi: 10.1016/j.matlet.2021.129982

    45. [45]

      Wang S P, Wu J, Yin J W, Hu Q, Geng D S, Liu L M. Improved electrocatalytic performance in overall water splitting with rational design of hierarchical Co3O4@NiFe layered double hydroxide core-shell nanostructure[J]. ChemElectroChem, 2018,5(10):1357-1363. doi: 10.1002/celc.201800194

    46. [46]

      Yang H Y, Driess M, Menezes P W. Self-supported electrocatalysts for practical water electrolysis[J]. Adv. Energy Mater., 2021,11(39)2170153. doi: 10.1002/aenm.202170153

    47. [47]

      Sun J L, Xu C J, Chen H Y. A review on the synthesis of CuCo2O4-based electrode materials and their applications in supercapacitors[J]. J. Materiomics, 2021,7(1):98-126. doi: 10.1016/j.jmat.2020.07.013

  • 加载中
    1. [1]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    2. [2]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    3. [3]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    4. [4]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    7. [7]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    11. [11]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    12. [12]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    13. [13]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    14. [14]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    15. [15]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    16. [16]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    20. [20]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

Metrics
  • PDF Downloads(24)
  • Abstract views(1821)
  • HTML views(494)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return