Citation: Shuwen SUN, Gaofeng WANG. Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368 shu

Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties

  • Corresponding author: Gaofeng WANG, wgf1979@126.com
  • Received Date: 8 October 2023
    Revised Date: 18 December 2023

Figures(4)

  • Based on Ⅴ-shaped auxiliary ligands, two novel coordination polymers, {[Cd(bipmo)(NDC)]·1.75H2O}n (1), {[Cd(bppmo)(NDC)(H2O)]·H2O}n (2), where H2NDC=2,6-naphthalenedicarboxylic acid, bipmo=bis(4-(1H-imidazol-1-yl)phenyl)methanone, bppmo=bis(4-(pyridin-4-yl)phenyl)methanone, have been synthesized under solvothermal conditions. They have been characterized by single-crystal X-ray diffraction, bond valence sum calculations, IR spectra, and elemental analyses. Complex 1 shows 2-fold interpenetrating sheets of {63} topology, which interpenetrate in a 2D → 2D parallel manner. Complex 2 reveals a 3-fold interpenetrating {63} network. The results indicate that the Ⅴ-shaped ligands have a great effect on the formation of the final structures. In addition, the luminescent properties of complexes 1 and 2 were investigated in detail.
  • 加载中
    1. [1]

      Sengupta D, Melix P, Bose S, Duncan J, Wang X, Mian M. R, Kirlikovali K O, Joodaki F, Islamoglu T, Yildirim T, Snurr R Q, Farha O K. Air-stable Cu(Ⅰ)metal-organic framework for hydrogen storage[J]. J. Am. Chem. Soc., 2023,145:20492-20502. doi: 10.1021/jacs.3c06393

    2. [2]

      Chen L, Tan K, Lan Y Q, Li S L, Shao K Z, Su Z M. Unusual microporous polycatenane-like metal-organic frameworks for the luminescent sensing of Ln3+ cations and rapid adsorption of iodine[J]. Chem. Commun., 2012,48:5919-5921. doi: 10.1039/c2cc31257c

    3. [3]

      KANG X Q, WANG J H, GU J Z. Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), nickel(Ⅱ) and cobalt(Ⅱ) coordination polymers constructed from 4,4'-(pyridin-3,5-diyl)dibenzoic acid[J]. Chinese J. Inorg. Chem., 2023,39(12):2385-2392.

    4. [4]

      WANG G F, SUN S W, SONG S F, LÜ M. Synthesis of a Cd(Ⅱ)-based coordination polymer for luminescence detecting 2,4,6-trinitrophenol[J]. Chinese J. Inorg. Chem., 2023,39(12):2407-2414.

    5. [5]

      Ingram C.W, Liao L, Bacsa J, Harruna I, Sabo D, Zhang Z J. Novel layered 2D and triply interpenetrating 3D cobalt-functionalized diaza-12-crown based coordination polymers: Synthesis, structure, and magnetic properties[J]. Cryst. Growth Des., 2013,13:1131-1139. doi: 10.1021/cg301480s

    6. [6]

      Rao K P, Higuchi M, Duan J, Kitagawa S. pH-dependent interpenetrated, polymorphic, Cd2+- and BTB-based porous coordination polymers with open metal sites[J]. Cryst. Growth Des., 2013,13:981-985. doi: 10.1021/cg301476p

    7. [7]

      XIA Y P, WANG C X, ZHENG J Y, LI N, CHANG Z, BU X H. Construction of a Fe-MOF based on carbazole-carboxylate ligand for CO2/CH4 separation[J]. Chem. J. Chinese Universities, 2020,41(11):2415-2420.  

    8. [8]

      Zhang X T, Fan L M, Sun Z, Zhang W, Li D C, Dou J M, Han L. Syntheses, structures, and properties of a series of multidimensional metal-organic polymers based on 3, 3', 5, 5'-biphenyltetracarboxylic acid and N-donor ancillary ligands[J]. Cryst. Growth Des., 2013,13:792-803. doi: 10.1021/cg301502u

    9. [9]

      Wang G F, Zhang X, Sun S W, Sun H, Yang X, Li H, Yao C Z, Sun S G, Tang Y P, Meng L X. Syntheses, crystal structures, and characterization of two Mn(Ⅱ) coordination polymers with bis(4-(1H-imidazol-1-yl)phenyl)methanone ligands[J]. Z. Naturforsch. B, 2016,71:869-874.

    10. [10]

      Wang G F, Zhang X, Sun S W, Sun H, Li H, Ma H X, Tang Y P, Gao X N, Yang L. Two copper(Ⅱ) coordination polymers constructed by bis(4-(1H-imidazol-1-yl)phenyl)methanone and dicarboxylate ligands[J]. Z. Naturforsch. B, 2017,72:257-261. doi: 10.1515/znb-2016-0225

    11. [11]

      CrysAlisPro, Version 1.171.35.19. Santa Clara (CA, USA): Agilent Technologies Inc., 2011.

    12. [12]

      Sheldrick G M. SHELXL 2014/7, Program for crystal structure refinement. University of Gö ttingen, Germany, 2014.

    13. [13]

      Sheldrick G M. A short history of SHELX[J]. Acta Crystallogr. Sect. A, 2008,A64:112-122.

    14. [14]

      Braga D, Polito M, D'Addario D, Tagliavini E, Proserpio D M, Grepioni F, Steed J W. Design, synthesis, and structural characterization of molecular and supramolecular heterobimetallic metallamacrocycles based on the 1, 1'-bis(4-pyridyl)ferrocene (Fe(η5-C5H4-1-C5H4N)2) ligand[J]. Organometallics, 2003,22:4532-4538. doi: 10.1021/om030432t

    15. [15]

      Cheng P C, Kuo P T, Liao Y H, Xie M Y, Hsu W, Chen J D. Ligand-isomerism controlled structural diversity of Zn(Ⅱ) and Cd(Ⅱ) coordination polymers from mixed dipyridyladipoamide and benzenedicarboxylate ligands[J]. Cryst. Growth Des., 2013,13:623-632. doi: 10.1021/cg301311m

    16. [16]

      Mu Y J, Ran Y G, Zhang B B, Du J L, Jiang C Y, Du J. Dicarboxylate ligands modulated structural diversity in the construction of Cd(Ⅱ) coordination polymers built from N-heterocyclic ligand: Synthesis, structures, and luminescent sensing[J]. Cryst. Growth Des., 2020,20:6030-6043. doi: 10.1021/acs.cgd.0c00739

    17. [17]

      Sharma C V K, Broker G A, Huddleston , J G, Baldwin J W, Metzger R M, Rogers R D. Design strategies for solid-state supramolecular arrays containing both mixed-metalated and freebase porphyrins[J]. J. Am. Chem. Soc., 1999,121:1137-1144. doi: 10.1021/ja983983x

    18. [18]

      Altermatt D, Brown I D. The automatic searching for chemical bonds in inorganic crystal structures[J]. Acta Crystallogr. Sect. B, 1985,B41:240-244.

    19. [19]

      Brown I D. Bond valence parameters. https://www.iucr.org/__data/assets/file/0011/150779/bvparm2020.cif

    20. [20]

      He X, Lu C Z, Yuan D Q. Two 3D porous cadmium tetrazolate frameworks with hexagonal tunnels[J]. Inorg. Chem., 2006,45:5760-5766. doi: 10.1021/ic0520162

    21. [21]

      Ouellette W, Hudson B S, Zubieta J. Hydrothermal and structural chemistry of the zinc(Ⅱ)- and cadmium(Ⅱ)-1,2,4-triazolate systems[J]. Inorg. Chem., 2007,46:4887-4904. doi: 10.1021/ic062269a

    22. [22]

      Shi X, Zhu G S, Fang Q R, Wu G, Tian G, Wang R W, Zhang D L, Xue M, Qiu S L. Novel supramolecular frameworks self-assembled from one-dimensional polymeric coordination chains[J]. Eur. J. Inorg. Chem., 2004:185-191.

    23. [23]

      Wang X L, Zhao D, Tian A X, Ying J. A series of 3D PW12O403--based Ag-bis(triazole) complexes containing different multinuclear loops: Syntheses, structures and properties[J]. CrystEngComm, 2013,15:4516-4526. doi: 10.1039/c3ce40375k

    24. [24]

      Zhang S Q, Jiang F L, Wu M Y, Ma J, Bu Y, Hong M C. Assembly of discrete one-, two-, and three-dimensional Zn(Ⅱ) complexes containing semirigid Ⅴ-shaped tricarboxylate ligands[J]. Cryst. Growth Des., 2012,12:1452-1463. doi: 10.1021/cg201556b

  • 加载中
    1. [1]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    2. [2]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    3. [3]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    6. [6]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    7. [7]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    8. [8]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    9. [9]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    10. [10]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    11. [11]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    12. [12]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    13. [13]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    14. [14]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    15. [15]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    16. [16]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    17. [17]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    18. [18]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    19. [19]

      Zhichao ZhouFuqian ChenXiaotong XiaDong YeRong ZhouLei LiTao DengZhenhua DingFang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970

    20. [20]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

Metrics
  • PDF Downloads(0)
  • Abstract views(120)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return