Citation: Kangshuai GENG, Yupei SUN, Jing HUANG, Hongwei HOU. Research progress of metal-organic framework films in third-order nonlinear optics[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 1-14. doi: 10.11862/CJIC.20230364 shu

Research progress of metal-organic framework films in third-order nonlinear optics

  • Corresponding author: Hongwei HOU, houhongw@zzu.edu.cn
  • Received Date: 6 October 2023
    Revised Date: 22 November 2023

Figures(8)

  • Metal-organic framework (MOF) materials have attracted widespread attention in the field of third-order nonlinear optics (NLO) due to their customizable structure and flexible and controllable coordination modes. Compared with the liquid dispersion, the third-order NLO performance of MOFs in the solid state is particularly important. This provides a deeper understanding of the inherent optical performance of MOFs and helps realize the practical application in optical devices. However, it is difficult to directly study the NLO performance of MOFs in the solid state due to the presence of scattering and limitations of transmittance. In order to study the NLO performance of MOFs in the solid state, the most feasible strategy is to process MOFs into films with better transmittance. MOF film materials not only inherit the MOF inherent NLO performance but also combine the high transmittance and flexible mechanical properties of the film. This review analyzes and summarizes the preparation methods of MOF films and related work on NLO performance research. The prospects of MOF films in third-order NLO performance are proposed in this review.
  • 加载中
    1. [1]

      Huang C, Zhang C, Xiao S M, Wang Y H, Fan Y B, Liu Y L, Zhang N, Qu G Y, Ji H J, Han J C, Ge L, Kivshar Y, Song Q H. Ultrafast control of vortex microlasers[J]. Science, 2020,367(6481):1018-1021. doi: 10.1126/science.aba4597

    2. [2]

      Liu Z W, Zhang B, Huang Y L, Song Y, Dong N N, Wang J, Chen Y. Ether-linked porphyrin covalent organic framework with broadband optical switch[J]. iScience, 2021,24(6)102526. doi: 10.1016/j.isci.2021.102526

    3. [3]

      Parbrook P J, Corbett B, Han J, Seong T Y, Amano H. Micro-light emitting diode: From chips to applications[J]. Laser Photon. Rev., 2021,15(5)2000133. doi: 10.1002/lpor.202000133

    4. [4]

      Wu M F, Tikhonov E, Tudi A, Kruglov I, Hou X L, Xie C W, Pan S L, Yang Z H. Target-driven design of deep-UV nonlinear optical materials via interpretable machine learning[J]. Adv. Mater., 2023,35(23)2300848. doi: 10.1002/adma.202300848

    5. [5]

      Hussain M, Liu X L, Zou J, Yang J, Ali Z, Rehman H U, He N Y, Dai J G, Tang Y J. On-chip classification of micro-particles using laser light scattering and machine learning[J]. Chin. Chem. Lett., 2022,33(4):1885-1888. doi: 10.1016/j.cclet.2021.09.044

    6. [6]

      Bao S J, Xu Z M, Ju Y, Song Y L, Wang H, Niu Z, Li X P, Braunstein P, Lang J P. The covalent and coordination co-driven assembly of supramolecular octahedral cages with controllable degree of distortion[J]. J. Am. Chem. Soc., 2020,142(31):13356-13361. doi: 10.1021/jacs.0c07014

    7. [7]

      Wang Z K, Du M H, Braunstein P, Lang J P. A cut-to-link strategy for cubane-based heterometallic sulfide clusters with giant third-order nonlinear optical response[J]. J. Am. Chem. Soc., 2023,145(18):9982-9987. doi: 10.1021/jacs.3c01831

    8. [8]

      Liu Y J, Li Q H, Li D J, Zhang X Z, Fang W H, Zhang J. Designable Al32-Oxo clusters with hydrotalcite-like structures: Snapshots of boundary hydrolysis and optical limiting[J]. Angew. Chem.-Int. Ed., 2021,60(9):4849-4854. doi: 10.1002/anie.202012919

    9. [9]

      WANG G L, SUN J Y, YIN A P, WANG Y J, ZHAO M G. Synthesis and ultrafast third-order nonlinear optical response of two chalcone derivatives[J]. Chemistry, 2019,82(11):1027-1032.

    10. [10]

      Geng K S, Xie Q, Zhao Y J, Yang L P, Song Y L, Hou H W. Unlocking the remarkable influence of intramolecular group rotation for third-order nonlinear optical properties[J]. Chem.-Asian J., 2021,16(8):981-987. doi: 10.1002/asia.202100160

    11. [11]

      Nath S, Puthukkudi A, Mohapatra J, Biswal B P. Covalent organic frameworks as emerging nonlinear optical materials[J]. Angew. Chem.-Int. Ed., 2023,62202218974. doi: 10.1002/anie.202218974

    12. [12]

      Biswal B P, Valligatla S, Wang M, Banerjee T, Saad N A, Mariserla B M K, Chandrasekhar N, Becker D, Addicoat M, Senkovska I, Berger R, Rao D N, Kaskel S, Feng X L. Nonlinear optical switching in regioregular porphyrin covalent organic frameworks[J]. Angew. Chem.-Int. Ed., 2019,58(21):6896-6900. doi: 10.1002/anie.201814412

    13. [13]

      Liang Y N, Yuan X, Zeng Z P, Zhu B H, Gu Y Z. Strong interfacial interactions of ZnS/Cu-TCPP hybrids contribute to excellent nonlinear optical absorption[J]. Mater. Today Phys., 2022,29100920. doi: 10.1016/j.mtphys.2022.100920

    14. [14]

      Cui Y, Zhao Y J, Wu J, Hou H W. Heterogeneous nanosized metal (metallic compound)@metal-organic framework composites: Recent advances in the preparation and applications[J]. Adv. Funct. Mater., 2023,33(36)2302573. doi: 10.1002/adfm.202302573

    15. [15]

      Shao Z C, Chen J S, Gao K X, Xie Q, Xue X J, Zhou S Y, Huang C, Mi L W, Hou H W. A double-helix metal-chain metal-organic framework as a high-output triboelectric nanogenerator material for self-powered anticorrosion[J]. Angew. Chem.-Int. Ed., 2022,61e202208994. doi: 10.1002/anie.202208994

    16. [16]

      Gao K X, Chen J S, Zhao M T, Hu R T, Chen S H, Xue X J, Shao Z C, Hou H W. 3D nanocrystalline metal-organic framework materials for the improved output performance of triboelectric nanogenerators[J]. Dalton Trans., 2023,52(2):444-451. doi: 10.1039/D2DT03477H

    17. [17]

      Shao Z C, Chen J S, Xie Q, Mi L W. Functional metal/covalent organic framework materials for triboelectric nanogenerator[J]. Coord. Chem. Rev., 2023,486215118. doi: 10.1016/j.ccr.2023.215118

    18. [18]

      Shao Z C, Cheng H R, Wei Y, Chen J S, Gao K X, Fang Z, Yan Y S, Mi L W, Hou H W. Cationic metal-organic framework with charge separation effect as a high output triboelectric nanogenerator material for self-powered anticorrosion[J]. Dalton Trans., 2023,52(37):13316-13323. doi: 10.1039/D3DT02185H

    19. [19]

      Zhao Y J, Cui Y, Meng X R, Ding J, Hou H W. Metal organic framework composites as adsorbents: Synergistic effect for water purification[J]. Coord. Chem. Rev., 2022,473214815. doi: 10.1016/j.ccr.2022.214815

    20. [20]

      Cui Y, Zhao Y J, Wu J, Hou H W. Recent discussions on homogeneous host-guest metal-organic framework composites in synthesis and catalysis[J]. Nano Today, 2023,52101972. doi: 10.1016/j.nantod.2023.101972

    21. [21]

      Zhao Y J, Shao Z C, Cui Y, Geng K S, Meng X R, Wu J, Hou H W. Guest-induced multilevel charge transport strategy for developing metal-organic frameworks to boost photocatalytic CO2 reduction[J]. Small, 2023,19(34)2300398. doi: 10.1002/smll.202300398

    22. [22]

      Chen J S, Shao Z C, Zhao Y J, Xue X J, Song H Y, Wu Z J, Cui S W, Zhang L, Huang C, Mi L W, Hou H W. Metal-ion coupling in metal-organic framework materials regulating the output performance of a triboelectric nanogenerator[J]. Inorg. Chem., 2022,61(5):2490-2498. doi: 10.1021/acs.inorgchem.1c03338

    23. [23]

      Medishetty R, Zareba J K, Mayer D, Samoc M, Fischer R A. Nonlinear optical properties, upconversion and lasing in metal-organic frameworks[J]. Chem. Soc. Rev., 2017,46(16):4976-5004. doi: 10.1039/C7CS00162B

    24. [24]

      Hou H W, Wei Y L, Song Y L, Mi L W, Tang M S, Li L K, Fan Y T. Metal ions play different roles in the third-order nonlinear optical properties of d10 metal-organic clusters[J]. Angew. Chem.-Int. Ed., 2005,44(37):6067-6074. doi: 10.1002/anie.200463004

    25. [25]

      Heinke L, Wöll C. Surface-mounted metal-organic frameworks: Crystalline and porous molecular assemblies for fundamental insights and advanced applications[J]. Adv. Mater., 2019,311806324. doi: 10.1002/adma.201806324

    26. [26]

      Xing C, Liu J X, Yang L P, Shao Z C, Xu W J, Zhao Y J, Li K, Song Y L, Hou H W. Third-order nonlinear optical adjusting behavior in azobenzene metal complexes[J]. Sci. China-Mater., 2021,64(2):408-419. doi: 10.1007/s40843-020-1429-9

    27. [27]

      Diao M J, Li H, Gao X Y, Hou R P, Cheng Q, Yu Z Y, Huang Z P, Zhang C. Giant nonlinear optical absorption of ion-intercalated tin disulfide associated with abundant in-gap defects[J]. Adv. Funct. Mater., 2021,31(49)2106930. doi: 10.1002/adfm.202106930

    28. [28]

      Li Z J, Chu S L, Zhang Y H, Chen W J, Chen J, Yuan Y B, Yang S F, Zhou H M, Chen T, Xiao Z G. Mass transfer printing of metal-halide perovskite films and nanostructures[J]. Adv. Mater., 2022,34(35)2203529. doi: 10.1002/adma.202203529

    29. [29]

      Yang L, Wang X Y, Tang X Y, Wang M Y, Ni C Y, Yu H, Song Y L, Abrahams B F, Lang J P. Temperature-dependent chloride-mediated access to atom-precise silver thiolate nanoclusters[J]. Sci. China-Chem., 2022,65(6):1094-1099. doi: 10.1007/s11426-022-1216-2

    30. [30]

      Rubio-Giménez V, Tatay S, Martí-Gastaldo C. Electrical conductivity and magnetic bistability in metal-organic frameworks and coordination polymers: Charge transport and spin crossover at the nanoscale[J]. Chem. Soc. Rev., 2020,49(15):5601-5638. doi: 10.1039/C9CS00594C

    31. [31]

      Bao S J, Xu Z M, Yu T C, Song Y L, Wang H, Niu Z, Li X P, Abrahams B F, Braunstein P, Lang J P. Flexible vertex engineers the controlled assembly of distorted supramolecular tetrahedral and octahedral cages[J]. Research, 2022. doi: 10.34133/2022/9819343

    32. [32]

      Ye C Y, Yang Z Q, Dong J H, Huang Y F, Song M M, Sa B S, Zheng J Y, Zhan H B. Layer-tunable nonlinear optical characteristics and photocarrier dynamics of 2D PdSe2 in broadband spectra[J]. Small, 2021,17(50)2103938. doi: 10.1002/smll.202103938

    33. [33]

      Cheng Y D, Datta S J, Zhou S, Jia J T, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes[J]. Chem. Soc. Rev., 2022,51(19):8300-8350. doi: 10.1039/D2CS00031H

    34. [34]

      Sheik-bahae M, Said A A, Wei T H, Hagan D J, Van Stryland E W. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE J. Quantum Electron., 1990,26(4):760-769. doi: 10.1109/3.53394

    35. [35]

      Sheik-bahae M, Said A A, Van Stryland E W. High-sensitivity, single-beam n2 measurements[J]. Opt. Lett., 1989,14(17):955-957. doi: 10.1364/OL.14.000955

    36. [36]

      Ma Z Z, Li Q H, Wang Z R, Gu Z G, Zhang J. Electrically regulating nonlinear optical limiting of metal-organic framework film[J]. Nat. Commun., 2022,13(1)6347. doi: 10.1038/s41467-022-34139-2

    37. [37]

      Geng K S, Yang X Q, Zhao Y J, Cui Y, Ding J, Hou H W. Efficient strategy for investigating the third-order nonlinear optical (NLO) properties of solid-state coordination polymers[J]. Inorg. Chem., 2022,61(31):12386-12395. doi: 10.1021/acs.inorgchem.2c01785

    38. [38]

      Gu Z G, Zhang J. Epitaxial growth and applications of oriented metal-organic framework thin films[J]. Coord. Chem. Rev., 2019,378:513-532. doi: 10.1016/j.ccr.2017.09.028

    39. [39]

      Haldar R, Wöll C. Hierarchical assemblies of molecular frameworks-MOF-on-MOF epitaxial heterostructures[J]. Nano Res., 2020,14(2):355-368.

    40. [40]

      Liu Y X, Wei Y N, Liu M H, Bai Y C, Wang X Y, Shang S C, Du C S, Gao W Q, Chen J Y, Liu Y Q. Face-to-face growth of wafer-scale 2D semiconducting MOF films on dielectric substrates[J]. Adv. Mater., 2021,33(13)2007741. doi: 10.1002/adma.202007741

    41. [41]

      Luo R W, Fu H Y, Li Y L, Xing Q L, Liang G H, Bai P, Guo X H, Lyu J F, Tsapatsis M. In situ fabrication of metal-organic framework thin films with enhanced pervaporation performance[J]. Adv. Funct. Mater., 2023,33(18)2213221. doi: 10.1002/adfm.202213221

    42. [42]

      Li D J, Gu Z G, Zhang J. Auto-controlled fabrication of a metal-porphyrin framework thin film with tunable optical limiting effects[J]. Chem. Sci., 2020,11(7):1935-1942. doi: 10.1039/C9SC05881H

    43. [43]

      Yuan Y B, Giri G, Ayzner A L, Zoombelt A P, Mannsfeld S C B, Chen J H, Nordlund D, Toney M F, Huang J S, Bao Z N. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method[J]. Nat. Commun., 2014,5(1)3005. doi: 10.1038/ncomms4005

    44. [44]

      Zhao H, Ma K, Li J M, Fu Y K, Qin Y, Zhao D B, Dai H T, Hu Z X, Sun Z X, Gao H Y. Surface characterization of the solution-processed organic-inorganic hybrid perovskite thin films[J]. Small, 2022,18(47)2204271. doi: 10.1002/smll.202204271

    45. [45]

      Guan Z H, Fu L L, Wei Z Y, Shan N Y, Li H, Fang Y, Zhao Y, Huang Z P, Humphrey M G, Zhang C. Toward strong nonlinear optical absorption properties of perovskite films via porphyrin axial passivation[J]. Mater. Today Phys., 2023,35101135. doi: 10.1016/j.mtphys.2023.101135

    46. [46]

      Dong L, Chu H W, Li Y, Zhao S Z, Li D C. Broadband optical nonlinearity of zeolitic imidazolate framework-8 (ZIF-8) for ultrafast photonics[J]. J. Mater. Chem. C, 2021,9(28):8912-8919. doi: 10.1039/D1TC01665B

    47. [47]

      Qian Q H, Asinger P A, Lee M J, Han G, Rodriguez K M, Lin S, Benedetti F M, Wu A X, Chi W S, Smith Z P. MOF-based membranes for gas separations[J]. Chem. Rev., 2020,120(16):8161-8266. doi: 10.1021/acs.chemrev.0c00119

    48. [48]

      Dechnik J, Gascon J, Doonan C J, Janiak C, Sumby C J. Mixed-matrix membranes[J]. Angew.Chem.-Int. Ed., 2017,56(32):9292-9310. doi: 10.1002/anie.201701109

    49. [49]

      Li D J, Li Q H, Wang Z R, Ma Z Z, Gu Z G, Zhang J. Interpenetrated metal-porphyrinic framework for enhanced nonlinear optical limiting[J]. J. Am. Chem. Soc., 2021,143(41):17162-17169. doi: 10.1021/jacs.1c07803

    50. [50]

      Li D J, Li Q H, Gu Z G, Zhang J. Oriented Assembly of 2D Metal-pyridylporphyrinic framework films for giant nonlinear optical limiting[J]. Nano Lett., 2021,21(23):10012-10018. doi: 10.1021/acs.nanolett.1c03655

    51. [51]

      Tian Y B, Li Q H, Wang Z R, Gu Z G, Zhang J. Coordination-induced symmetry breaking on metal-porphyrinic framework thin films for enhanced nonlinear optical limiting[J]. Nano Lett., 2023,23(7):3062-3069. doi: 10.1021/acs.nanolett.3c00635

    52. [52]

      CHANG Q, GUAN J, MENG T M. Preparation and nonlinear absorption properties of SiO2@CdTe@Au composite nanoparticles[J]. Chinese J. Inorg. Chem., 2021,37(9):1683-1690.

    53. [53]

      Zhang L M, Xu L F, Wang Y, Liu J Y, Tan G H, Huang F Y, He N Y, Lu Z X. A novel therapeutic vaccine based on graphene oxide nanocomposite for tumor immunotherapy[J]. Chin. Chem. Lett., 2022,33(8):4089-4095. doi: 10.1016/j.cclet.2022.01.071

    54. [54]

      Zhu Y D, Kang Y, Gu Z G, Zhang J. Step by step bisacrificial templates growth of bimetallic sulfide QDs-attached MOF nanosheets for nonlinear optical limiting[J]. Adv. Opt. Mater., 2021,9(7)2002072. doi: 10.1002/adom.202002072

    55. [55]

      Gu Z G, Li D J, Zheng C, Kang Y, Wöll C, Zhang J. MOF-templated synthesis of ultrasmall photoluminescent carbon-nanodot arrays for optical applications[J]. Angew. Chem.-Int. Ed., 2017,56(24):6853-6858. doi: 10.1002/anie.201702162

    56. [56]

      Xiao Y H, Gu Z G, Zhang J. Vapor-assisted epitaxial growth of porphyrin-based MOF thin film for nonlinear optical limiting[J]. Sci. China-Chem., 2020,63(8):1059-1065. doi: 10.1007/s11426-020-9759-6

    57. [57]

      Xue X N, Wang H R, Han Y B, Hou H W. Photoswitchable nonlinear optical properties of metal complexes[J]. Dalton Trans., 2018,47:13-22. doi: 10.1039/C7DT03989A

    58. [58]

      Xie Q, Shao Z C, Zhao Y J, Yang L P, Wu Q, Xu W J, Li K, Song Y L, Hou H W. Novel photo-controllable third-order nonlinear optical (NLO) switches based on azobenzene derivatives[J]. Dyes Pigment., 2019,170107599. doi: 10.1016/j.dyepig.2019.107599

    59. [59]

      Zhou J C, Xing C, Zhai Y L, Xu W J, Zhao Y J, Geng K S, Hou H W. Influence of a substituted methyl on the photoresponsive third-order nonlinear-optical properties based on azobenzene metal complexes[J]. Inorg. Chem., 2021,60(10):7240-7249. doi: 10.1021/acs.inorgchem.1c00331

    60. [60]

      Lei S, Chang L M, Gu Z G, Zhang J. A metal-porphyrinic framework film as an efficient optical limiting layer in an electro-optical switchable device[J]. Chem. Commun., 2021,57(79):10166-10169. doi: 10.1039/D1CC04513J

    61. [61]

      ZHANG Z C, TANG G D, TANG T T, Culnane L F, ZHANG N, SONG Y L, LI R Q, XIA M. Hydrothermal synthesis of Mn(Ⅱ) complex based on imidazole ligand: Structure, theoretical calculation and third-order nonlinear optical properties[J]. Chinese J. Inorg. Chem., 2018,34(2):367-374.

    62. [62]

      Zhao Y J, Li H H, Shao Z C, Xu W J, Meng X R, Song Y L, Hou H W. Investigation of regulating third-order nonlinear optical property by coordination interaction[J]. Inorg. Chem., 2019,58(8):4792-4801. doi: 10.1021/acs.inorgchem.8b03154

    63. [63]

      Liu P, Liu Q X, Zhao N, An C X, Lian Z X. Structure and third-order nonlinear optical properties of the two-dimensional Co coordination polymer [Co(1, 2-BIB)(PA)]n {1, 2-BIB is 1, 2-bis-[(1H-imidazol-1-yl)methyl]benzene and H2PA is phthalic acid}[J]. Acta Crystallogr. Sect. C-Struct. Chem., 2016,72:890-894. doi: 10.1107/S2053229616015928

    64. [64]

      Lian Z X, Jiang K, Lou T J, Zhao N, Liu P, An C X. Investigation on third-order nonlinear optical properties of four transition metal complexes thin films by Z-scan technique[J]. J. Clust. Sci., 2017,28:1509-1521. doi: 10.1007/s10876-017-1161-9

    65. [65]

      Lian Z X, Jiang K, Lou T J. Structures and third-order nonlinear optical properties of two three-dimensional Cd(Ⅱ) coordination polymers with trinodal (3, 4, 5) and dinodal (4, 5) connected network topologies[J]. RSC Adv., 2015,5(101):82781-82788. doi: 10.1039/C5RA14734D

    66. [66]

      Liu R Q, Zhao N, Yang F X, Wang A R, Liu P, An C X, Lian Z X. Enhanced third-order nonlinear optical properties of three 2D coordination polymers based on bis(imidazole) ligands and dicarboxylic ligands[J]. Polyhedron, 2016,111:16-25. doi: 10.1016/j.poly.2016.03.015

    67. [67]

      Pan H, Chu H W, Wang X, Li Y, Zhao S Z, Li G Q, Li D C. Optical nonlinearity of zeolitic imidazolate framework-67 in the near-infrared region[J]. Mat. Chem. Front., 2020,4(7):2081-2088. doi: 10.1039/D0QM00226G

    68. [68]

      Huang J, Lang F F, Cui Y, Xie L X, Geng K S, Zhao Y J, Hou H W. Regulation of third-order NLO properties by central metal exchange of heterogeneous MOFs@CeO2[J]. Adv. Opt. Mater., 2022,10(24)2201872. doi: 10.1002/adom.202201872

    69. [69]

      Sun Y P, Xu W J, Lang F F, Wang H R, Pan F F, Hou H W. Transformation of SBUs and synergy of MOF host-guest in single crystalline state: Ingenious strategies for modulating third-order NLO signals[J]. Small, 2023. doi: 10.1002/smll.202305879

    70. [70]

      Liang Y N, Hu W J, Yuan X, Zeng Z P, Zhu B H, Gu Y Z. Switchable nonlinear optical absorption of metal-organic frameworks[J]. Adv. Opt. Mater., 2022,10(18)2200779. doi: 10.1002/adom.202200779

    71. [71]

      Zhu Z Y, Wang Z R, Li Q H, Ma Z Z, Wang F, Zhang J. Porphyrin metal-organic frameworks with bilayer and pillar-layered frameworks and third-order nonlinear optical properties[J]. Dalton Trans., 2023,52(14):4309-4314. doi: 10.1039/D3DT00440F

    72. [72]

      ZHAI Y L, XU W J, MENG X R, HOU H W. Adjusting the third-order nonlinear optical switch performance based on azobenzene derivatives[J]. Acta Chim. Sin., 2020,78(3):256-262.

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    12. [12]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    13. [13]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    17. [17]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(3)
  • Abstract views(554)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return