-
[1]
Zang X N, Jiang Y Q, Sanghadasa M H, Lin L W. Chemical vapor deposition of 3D graphene/carbon nanotubes networks for hybrid supercapacitors[J]. Sens. Actuator A Phys.,
2020,304111886.
doi: 10.1016/j.sna.2020.111886
-
[2]
Sumaiyah N, Emre E. Current progress achieved in novel materials for supercapacitor electrodes: Mini review[J]. Nanoscale Adv.,
2019,1(8):2817-2827.
doi: 10.1039/C9NA00345B
-
[3]
Wang J, Feng C Q, Sun Z Q, Chou S L, Liu H K, Wang J Z. In situ one-step hydrothermal synthesis of a lead germanate-graphene composite as a novel anode material for lithium-ion batteries[J]. Sci. Rep.,
2014,47030.
doi: 10.1038/srep07030
-
[4]
Ramachandran R, Wang Y, Chandrasekaran S, Li M Z, Luo A X, Xu Z X, Wang F. Construction of MoS2 intercalated siloxene heterostructure for all-solidstate symmetric supercapacitors[J]. Appl. Mater. Today,
2022,29101578.
doi: 10.1016/j.apmt.2022.101578
-
[5]
Priyanka L, Parul S, Pankaj S, Pushpa S, Bharti , Ashwani K, Meenal G, Yogesh K. Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance[J]. J. Energy Storage,
2022,48103871.
doi: 10.1016/j.est.2021.103871
-
[6]
Wang J, Wang J Z, Sun Z Q, Gao X W, Zhong C, Chou S L, Liu H K. A germanium/single-walled carbon nanotube composite paper as a freestanding anode for lithium-ion batteries[J]. J. Mater. Chem. A,
2014,2(13):4613-4618.
doi: 10.1039/c3ta14934j
-
[7]
Zhang L L, Zhou R, Zhao X S. Graphene-based materials as supercapacitor electrodes[J]. J. Mater. Chem.,
2010,20:5983-5992.
doi: 10.1039/c000417k
-
[8]
Miller J R, Outlaw R A, Holloway B C. Graphene double-layer capacitor with AC line-filtering performance[J]. Science,
2010,329(5999):1637-1639.
doi: 10.1126/science.1194372
-
[9]
Liu C G, Yu Z N, Neff D, Zhamu A, Jang B Z. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Lett.,
2010,10(12):4863-4868.
doi: 10.1021/nl102661q
-
[10]
Yang S Y, Chang K H, Tien H W, Lee Y F, Li S M, Wang Y S, Wang J Y, Ma C C M, Hu C C. Design and tailoring OFA hierarchical graphene-carbon nanotube architecture for supercapacitors[J]. J. Mater. Chem.,
2011,21:2374-2380.
doi: 10.1039/C0JM03199B
-
[11]
Huang Z D, Zhang B, Oh S W, Zheng Q B, Lin X Y, Yousefi N, Kim J K. Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors[J]. J. Mater. Chem.,
2012,22:3591-3599.
doi: 10.1039/c2jm15048d
-
[12]
Yang X L, Zhang M Y, Wang C H, Bi M, Xie J L, Bai W X, Zhang Y, Pan S C, Liu M L, Pan X C, Lu Z J, Han Z W, Fu Y S. S, N Co-doped rGO/fluorine-free Ti3C2Tx aerogels for high performance all-solid-state supercapacitors[J]. J. Energy Storage,
2023,71108140.
doi: 10.1016/j.est.2023.108140
-
[13]
Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc.,
1958,208:1334-1339.
-
[14]
Liu X L, Lu Z J, Huang X N, Bai J F, Li C, Tu C J, Chen X X. Self-assembled S, N Co-doped reduced graphene oxide/MXene Aerogel for both symmetric liquid- and all-solid-state supercapacitors[J]. J. Power Sources,
2021,516230682.
doi: 10.1016/j.jpowsour.2021.230682
-
[15]
Cheng J X, Lu Z J, Zhao X F, Chen X X, Zhu Y M, Chu H Y. Electrochemical performance of porous carbons derived from needle coke with different textures for supercapacitor electrode materials[J]. Carbon Lett.,
2021,31:57-65.
doi: 10.1007/s42823-020-00149-7
-
[16]
Kim T, Subedi S, Dahal B, Chhetri K, Mukhiya T, Muthurasu A, Gautam J, Lohani P C, Acharya D, Pathak I, Chae S H, Ko T H, Kim H Y. Homogeneous elongation of N-doped CNTs over nano-fibrillated hollow-barbon-nanofiber: Mass and charge balance in asymmetric supercapacitors is no longer problematic[J]. Adv. Sci.,
2022,202200650.
-
[17]
Du J, Li M, Song J Z, Gao X Q, Hou S L, Chen A B. In-situ activator-induced evolution of morphology on carbon materials for supercapacitors[J]. J. Colloid Interface Sci.,
2023,630:61-69.
doi: 10.1016/j.jcis.2022.09.113
-
[18]
Xu S K, Li Z M, Wei G D, Wang Y H, Yang Y. Intercalation and surface modification of two-dimensional transition metal carbonitride Ti3CNTx for ultrafast supercapacitors[J]. J. Mater. Chem. A,
2022,36:18812-18821.
-
[19]
Ji T, Tan L C, Bai J X, Hu X T, Xiao S Q, Chen Y W. Synergistic dispersible graphene: Sulfonated carbon nanotubes integrated with PEDOT for large-scale transparent conductive electrodes[J]. Carbon,
2016,98:15-23.
doi: 10.1016/j.carbon.2015.10.079
-
[20]
Thebo K H, Qian X, Zhang Q, Chen L, Cheng H M, Ren W. Highly stable graphene-oxide-based membranes with superior permeability[J]. Nat. Commun.,
2018,9(1)1486.
doi: 10.1038/s41467-018-03919-0
-
[21]
Wen Y, Rufford T E, Jurcakova D H, Zhu X, Wang L. Structure control of nitrogen-rich graphene nanosheets using hydrothermal treatment and formaldehyde polymerization for supercapacitors[J]. ACS Appl. Mater. Interfaces,
2016,8:18051-18059.
doi: 10.1021/acsami.6b04572
-
[22]
Lu Z J, Chen X X, Liu P G, Huang X N, Wei J, Ren Z, Yao S D, Fang Z G, Wang T, Masa J. Co-Mn hybrid oxides supported on N-doped graphene as efficient electrocatalysts for reversible oxygen electrodes[J]. J. Electrochem. Soc.,
2018,165:580-589.
-
[23]
Lu Z J, Liu X L, Wang T, Huang X N, Dou J X, Wu D L, Yu J L, Wu S Y, Chen X X. S/N-codoped carbon nanotubes and reduced graphene oxide aerogel based supercapacitors working in a wide temperature range[J]. J. Colloid Interface Sci.,
2023,638:709-718.
doi: 10.1016/j.jcis.2023.02.013
-
[24]
WANG Y Z, LI G. S, N co-doped three-dimensional graphene for all-solid-state supercapacitors[J]. Chem. Ind. Eng. Prog.,
2023,42(4):1974-1982.
-
[25]
WEI L, WANG J K, LIU K G, ZHOU Q Y, PAN H X, FAN S, ZHANG Y. Nanocellulose/reduced graphene oxide composites for high performance supercapacitors[J]. Chinese J. Inorg. Chem.,
2023,39(3):456-464.
doi: 10.11862/CJIC.2022.287
-
[26]
Mo F, Zhang H X, Wang Y X, Chen C X, Wu X L. Heteroatom-doped hierarchical porous carbon for high performance flexible all-solid-state symmetric supercapacitors[J]. J. Energy Storage,
2022,49104122.
doi: 10.1016/j.est.2022.104122