Citation: Xiaolong YANG, Chenhao WANG, Zhenjie LU, Shugang PAN, Yongsheng FU, Xin WANG. Three-dimensional porous carbon nanotubes-reduced graphene oxide composite aerogel for high-performance symmetrical supercapacitor[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 155-163. doi: 10.11862/CJIC.20230362 shu

Three-dimensional porous carbon nanotubes-reduced graphene oxide composite aerogel for high-performance symmetrical supercapacitor

Figures(6)

  • Carbon nanotubes-reduced graphene oxide (CNTs-rGO) three-dimensional aerogels were prepared using hydroxylated carbon nanotubes (CNT-OH) and graphene oxide (GO) as raw materials through redox self-assembly hydrothermal synthesis strategy. The effect of hydrothermal temperature on three-dimensional aerogels was investigated. The structure and morphology of the materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman) and X-ray photoelectron spectroscopy (XPS). The electrochemical test results indicate that the aerogel CNTs-rGO synthesized at 140 ℃ showed the best electrochemical performance, the specific capacitance at 1 A·g-1 current density was up to 294.65 F·g-1, and the shape of cyclic voltammetry curve at 50 mV·s-1 scanning speed was still similar to a rectangle, showing good reversibility. The assembled symmetrical supercapacitor had a maximum energy density of 3.744 Wh·kg-1 at a power density of 249.8 W·kg-1. After 10 000 cycles at 1 A·g-1, its capacitance retention and Coulombic efficiency were both about 100%. The excellent electrochemical performance is mainly attributed to the porous three -dimensional structure of CNTs -rGO composite material, which ensures rapid ion transport. Carbon nanotubes can not only overcome the sheet stacking problem of graphene, but also increase the specific surface area of the composite material, increase the reactive sites, and improve its electrochemical properties; at the same time, it can also provide electron transport channels and improve the conductivity of the material, so that the composite material has better mechanical and electrochemical properties.
  • 加载中
    1. [1]

      Zang X N, Jiang Y Q, Sanghadasa M H, Lin L W. Chemical vapor deposition of 3D graphene/carbon nanotubes networks for hybrid supercapacitors[J]. Sens. Actuator A Phys., 2020,304111886. doi: 10.1016/j.sna.2020.111886

    2. [2]

      Sumaiyah N, Emre E. Current progress achieved in novel materials for supercapacitor electrodes: Mini review[J]. Nanoscale Adv., 2019,1(8):2817-2827. doi: 10.1039/C9NA00345B

    3. [3]

      Wang J, Feng C Q, Sun Z Q, Chou S L, Liu H K, Wang J Z. In situ one-step hydrothermal synthesis of a lead germanate-graphene composite as a novel anode material for lithium-ion batteries[J]. Sci. Rep., 2014,47030. doi: 10.1038/srep07030

    4. [4]

      Ramachandran R, Wang Y, Chandrasekaran S, Li M Z, Luo A X, Xu Z X, Wang F. Construction of MoS2 intercalated siloxene heterostructure for all-solidstate symmetric supercapacitors[J]. Appl. Mater. Today, 2022,29101578. doi: 10.1016/j.apmt.2022.101578

    5. [5]

      Priyanka L, Parul S, Pankaj S, Pushpa S, Bharti , Ashwani K, Meenal G, Yogesh K. Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance[J]. J. Energy Storage, 2022,48103871. doi: 10.1016/j.est.2021.103871

    6. [6]

      Wang J, Wang J Z, Sun Z Q, Gao X W, Zhong C, Chou S L, Liu H K. A germanium/single-walled carbon nanotube composite paper as a freestanding anode for lithium-ion batteries[J]. J. Mater. Chem. A, 2014,2(13):4613-4618. doi: 10.1039/c3ta14934j

    7. [7]

      Zhang L L, Zhou R, Zhao X S. Graphene-based materials as supercapacitor electrodes[J]. J. Mater. Chem., 2010,20:5983-5992. doi: 10.1039/c000417k

    8. [8]

      Miller J R, Outlaw R A, Holloway B C. Graphene double-layer capacitor with AC line-filtering performance[J]. Science, 2010,329(5999):1637-1639. doi: 10.1126/science.1194372

    9. [9]

      Liu C G, Yu Z N, Neff D, Zhamu A, Jang B Z. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Lett., 2010,10(12):4863-4868. doi: 10.1021/nl102661q

    10. [10]

      Yang S Y, Chang K H, Tien H W, Lee Y F, Li S M, Wang Y S, Wang J Y, Ma C C M, Hu C C. Design and tailoring OFA hierarchical graphene-carbon nanotube architecture for supercapacitors[J]. J. Mater. Chem., 2011,21:2374-2380. doi: 10.1039/C0JM03199B

    11. [11]

      Huang Z D, Zhang B, Oh S W, Zheng Q B, Lin X Y, Yousefi N, Kim J K. Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors[J]. J. Mater. Chem., 2012,22:3591-3599. doi: 10.1039/c2jm15048d

    12. [12]

      Yang X L, Zhang M Y, Wang C H, Bi M, Xie J L, Bai W X, Zhang Y, Pan S C, Liu M L, Pan X C, Lu Z J, Han Z W, Fu Y S. S, N Co-doped rGO/fluorine-free Ti3C2Tx aerogels for high performance all-solid-state supercapacitors[J]. J. Energy Storage, 2023,71108140. doi: 10.1016/j.est.2023.108140

    13. [13]

      Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc., 1958,208:1334-1339.

    14. [14]

      Liu X L, Lu Z J, Huang X N, Bai J F, Li C, Tu C J, Chen X X. Self-assembled S, N Co-doped reduced graphene oxide/MXene Aerogel for both symmetric liquid- and all-solid-state supercapacitors[J]. J. Power Sources, 2021,516230682. doi: 10.1016/j.jpowsour.2021.230682

    15. [15]

      Cheng J X, Lu Z J, Zhao X F, Chen X X, Zhu Y M, Chu H Y. Electrochemical performance of porous carbons derived from needle coke with different textures for supercapacitor electrode materials[J]. Carbon Lett., 2021,31:57-65. doi: 10.1007/s42823-020-00149-7

    16. [16]

      Kim T, Subedi S, Dahal B, Chhetri K, Mukhiya T, Muthurasu A, Gautam J, Lohani P C, Acharya D, Pathak I, Chae S H, Ko T H, Kim H Y. Homogeneous elongation of N-doped CNTs over nano-fibrillated hollow-barbon-nanofiber: Mass and charge balance in asymmetric supercapacitors is no longer problematic[J]. Adv. Sci., 2022,202200650.

    17. [17]

      Du J, Li M, Song J Z, Gao X Q, Hou S L, Chen A B. In-situ activator-induced evolution of morphology on carbon materials for supercapacitors[J]. J. Colloid Interface Sci., 2023,630:61-69. doi: 10.1016/j.jcis.2022.09.113

    18. [18]

      Xu S K, Li Z M, Wei G D, Wang Y H, Yang Y. Intercalation and surface modification of two-dimensional transition metal carbonitride Ti3CNTx for ultrafast supercapacitors[J]. J. Mater. Chem. A, 2022,36:18812-18821.

    19. [19]

      Ji T, Tan L C, Bai J X, Hu X T, Xiao S Q, Chen Y W. Synergistic dispersible graphene: Sulfonated carbon nanotubes integrated with PEDOT for large-scale transparent conductive electrodes[J]. Carbon, 2016,98:15-23. doi: 10.1016/j.carbon.2015.10.079

    20. [20]

      Thebo K H, Qian X, Zhang Q, Chen L, Cheng H M, Ren W. Highly stable graphene-oxide-based membranes with superior permeability[J]. Nat. Commun., 2018,9(1)1486. doi: 10.1038/s41467-018-03919-0

    21. [21]

      Wen Y, Rufford T E, Jurcakova D H, Zhu X, Wang L. Structure control of nitrogen-rich graphene nanosheets using hydrothermal treatment and formaldehyde polymerization for supercapacitors[J]. ACS Appl. Mater. Interfaces, 2016,8:18051-18059. doi: 10.1021/acsami.6b04572

    22. [22]

      Lu Z J, Chen X X, Liu P G, Huang X N, Wei J, Ren Z, Yao S D, Fang Z G, Wang T, Masa J. Co-Mn hybrid oxides supported on N-doped graphene as efficient electrocatalysts for reversible oxygen electrodes[J]. J. Electrochem. Soc., 2018,165:580-589.

    23. [23]

      Lu Z J, Liu X L, Wang T, Huang X N, Dou J X, Wu D L, Yu J L, Wu S Y, Chen X X. S/N-codoped carbon nanotubes and reduced graphene oxide aerogel based supercapacitors working in a wide temperature range[J]. J. Colloid Interface Sci., 2023,638:709-718. doi: 10.1016/j.jcis.2023.02.013

    24. [24]

      WANG Y Z, LI G. S, N co-doped three-dimensional graphene for all-solid-state supercapacitors[J]. Chem. Ind. Eng. Prog., 2023,42(4):1974-1982.

    25. [25]

      WEI L, WANG J K, LIU K G, ZHOU Q Y, PAN H X, FAN S, ZHANG Y. Nanocellulose/reduced graphene oxide composites for high performance supercapacitors[J]. Chinese J. Inorg. Chem., 2023,39(3):456-464. doi: 10.11862/CJIC.2022.287

    26. [26]

      Mo F, Zhang H X, Wang Y X, Chen C X, Wu X L. Heteroatom-doped hierarchical porous carbon for high performance flexible all-solid-state symmetric supercapacitors[J]. J. Energy Storage, 2022,49104122. doi: 10.1016/j.est.2022.104122

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    12. [12]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    15. [15]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    16. [16]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    19. [19]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    20. [20]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

Metrics
  • PDF Downloads(8)
  • Abstract views(606)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return