Citation: Yuantao CAI, Kun WANG, Xinchen GUO, Yingyi LU, Huiqi ZHANG, Yiyao HAN, Yunlong XIE, Xiangrong YE. Construction of fly ash-based NaA/NaX double crystal zeolite and its synergistic adsorption of ammonia nitrogen[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 124-134. doi: 10.11862/CJIC.20230359 shu

Construction of fly ash-based NaA/NaX double crystal zeolite and its synergistic adsorption of ammonia nitrogen

Figures(9)

  • The synthesis of zeolite molecular sieves (referred to as GFS) using fly ash as a raw material was carried out in three stages. The method employed for this synthesis was called"combined modification three-step synthesis", which involved ultrasonic-assisted alkali fusion microwave crystallization combined with waste glass/13X seed/ NaH2PO4 impregnation. To compare the results, traditional alkali fusion hydrothermal synthesis was used to synthesize zeolite molecular sieves (referred to as FS). In addition, zeolite molecular sieves (referred to as WFS) were synthesized using the"three-step synthesis"method of ultrasonic-assisted alkali fusion microwave crystallization. The materials were characterized using various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), energy-dispersive spectroscopy (EDS), and N2 adsorption-desorption analysis to determine their composition, morphology, and structure. The results indicated that WFS and GFS exhibited higher specific surface areas and well-developed mesopores and micropores compared to FS. Additionally, the crystal type of zeolite molecular sieves shifted from NaA single crystal to NaA/NaX twin crystal. Ammonia nitrogen adsorption experiments revealed that GFS (56.01 mg·g-1) showed better adsorption performance than WFS (49.17 mg·g-1) and FS (39.75 mg·g-1). The adsorption of ammonia nitrogen follows the second-order kinetics model and the Langmuir model, as indicated by kinetic and thermodynamic data. This process primarily relies on ion exchange and is both spontaneous and exothermic. Lower temperatures enhance the adsorption of ammonia nitrogen.
  • 加载中
    1. [1]

      Huang H M, Zhang P, Zhang Z, Liu J H, Xiao J, Gao F M. Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology[J]. J. Clean. Prod., 2016,127:302-310. doi: 10.1016/j.jclepro.2016.04.002

    2. [2]

      LI X G, ZHAO L, RUAN D K, ZHUO J D, GONG B, YANG T X, ZHANG Y, ZENG Y P, GUAN W X. Synthesis and preparation of fly ash-based X-type zeolite zeolite and its ammonia removal performance[J]. Bull. Am. Ceram. Soc., 2018,37(11):3663-3668.

    3. [3]

      Liu Y, Yan C J, Zhang Z H, Wang H Q. A comparative study on fly ash, geopolymer and faujasite block for Pb removal from aqueous solution[J]. Fuel, 2016,185:181-189. doi: 10.1016/j.fuel.2016.07.116

    4. [4]

      Zhang X Y, Li C Q, Zheng S L, Sun Z M. A review of the synthesis and application of zeolites from coal-based solid wastes[J]. Int. J. Miner. Metall. Mater., 2022,29(1):1-21. doi: 10.1007/s12613-021-2256-8

    5. [5]

      Li H Q, Hui J B, Wang C Y, Bao W J, Sun Z H. Removal of sodium (Na2O) from alumina extracted coal fly ash by a mild hydrothermal process[J]. Hydrometallurgy, 2015,153:1-5. doi: 10.1016/j.hydromet.2015.02.001

    6. [6]

      Yao Z T, Ye Y, Xia M S. Synthesis and characterization of lithium zeolites with ABW type from coal fly ash[J]. Environ. Prog. Sustain. Energy, 2013,32(3):790-796. doi: 10.1002/ep.11689

    7. [7]

      Zhou L, Chen Y L, Zhang X H, Tian F M, Zu Z N. Zeolites developed from mixed alkali modified coal fly ash for adsorption of volatile organic compounds[J]. Mater. Lett., 2014,119:140-142. doi: 10.1016/j.matlet.2013.12.097

    8. [8]

      Chen B, Luo Z W, Lu A X. Preparation of sintered foam glass with high fly ash content[J]. Mater. Lett., 2011,65(23/24):3555-3558.

    9. [9]

      LI J J, DAN H B, XIE W, ISLAM N, YANG L M, YE X K, ZHU J B. Preparation of magnetic adsorbents for fly ash and phosphorus adsorption mechanism[J]. Chinese J. Inorg. Chem., 2018,34(8):1455-1462.

    10. [10]

      Shigemoto N, Hayashi H, Miyaura K. Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction[J]. J. Mater. Sci, 1993,28(17):4781-4786. doi: 10.1007/BF00414272

    11. [11]

      CHEN J, SUN D K, DONG S H, HUANG M, XU Q H. Microwave calcined kaolin and synthetic detergent aids 4A zeolite[J]. Chinese J. Inorg. Chem., 2000(5):769-774.

    12. [12]

      Dere Ozdemir O, Piskin S. A novel synthesis method of zeolite X from coal fly ash: Alkaline fusion followed by ultrasonic-assisted synthesis method[J]. Waste Biomass Valori., 2019,10(1):143-154. doi: 10.1007/s12649-017-0050-7

    13. [13]

      Ejtemaei M, Sadighi S, Rashidzadeh M, Khorram S, Back J O, Penner S, Noisternig N, Salari D, Niaei A. Investigating the cold plasma surface modification of kaolin- and attapulgite-bound zeolite A[J]. J. Ind. Eng. Chem., 2022,106:113-127. doi: 10.1016/j.jiec.2021.10.020

    14. [14]

      Zhang B P, Chen Y L, Wei L, Zu Z N. Preparation of molecular sieve X from coal fly ash for the adsorption of volatile organic compounds[J]. Microporous Mesoporous Mater., 2012,156:36-39. doi: 10.1016/j.micromeso.2012.02.016

    15. [15]

      WEI E N. Study on the preparation and transformation mechanism of different dipolymer zeolite (NaA/NaX/SOD) microspheres and their adsorption properties for Pb2+. Nanning: Guangxi University, 2022: 51-56

    16. [16]

      Belviso C, Cavalcante F, Javier Huertas F, Lettino A, Ragone P, Fiore S. The crystallisation of zeolite (X- and A-type) from fly ash at 25 ℃ in artificial sea water[J]. Microporous Mesoporous Mater., 2012,162:115-121. doi: 10.1016/j.micromeso.2012.06.028

    17. [17]

      Belviso C, Agostinelli E, Belviso S, Cavalcante F, Pascucci S, Peddis D, Varvaro G, Fiore S. Synthesis of magnetic zeolite at low temperature using a waste material mixture: Fly ash and red mud[J]. Microporous Mesoporous Mater., 2015,202:208-216. doi: 10.1016/j.micromeso.2014.09.059

    18. [18]

      Zhang Q K, Ma B Z, Wang C Y, Chen Y Q, Zhang W J. Comprehensive utilization of complex rubidium ore resources: Mineral dissociation and selective leaching of rubidium and potassium[J]. Int. J. Miner. Metall. Mater., 2023,30(5):857-867. doi: 10.1007/s12613-022-2436-1

    19. [19]

      CUI J X, WANG L Y, LI Y, HE Y, WANG R, HAN J L. Preparation and characterization of 4A zeolite based on water quenched slag and fly ash[J]. Inorg. Chem. Front., 2022,54(4):135-140.

    20. [20]

      Hae J L, Young M K, Oh S K, Ik J K. Structural and morphological transformation of NaX zeolite crystals at high temperature[J]. J. Eur. Ceram., 2007,27(2/3):561-564.

    21. [21]

      BAI F, Ma H W, ZHANG X H. Experimental study on hydrothermal synthesis of 13X zeolite molecular sieve from potassium feldspar powder[J]. Bull. Mineral. Petrol. Geochem., 2004(1):10-14.

    22. [22]

      Gholipour F, Mofarahi M. Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: Experimental and thermodynamic modeling[J]. J. Supercrit. Fluid, 2016,111:47-54. doi: 10.1016/j.supflu.2016.01.008

    23. [23]

      Zhou T, Yang D H, Wang Y J, Chen J S, Chen Q, Liu D W, Liu Z W. Low-pressure-RF plasma modification of UiO-66 and its application in methylene blue adsorption[J]. Plasma Sci. Technol., 2023,25(8):138-145.

    24. [24]

      Fu C Y, Tan Z M, Cheng J F, Xie J L, Dai X Z, Du Y Y, Zhu S, Wang S Q, Yan M H. Effective removal of cesium by ammonium molybdophosphate-polyethylene glycol magnetic nanoparticles[J]. J. Environ. Chem. Eng., 2023,11(5)110544. doi: 10.1016/j.jece.2023.110544

    25. [25]

      WU C H, ZHENG G Y, WANG J L, MO S Y, ZOU Z G, LONG F. Preparation of highly dispersible nano-diaspore and nano-alumina and their adsorption properties on methyl orange[J]. Chinese J. Inorg. Chem., 2019,35(3):449-458.

    26. [26]

      XUE J L, CAO G T, NI Z M. Adsorption performance and mechanism of AB24 on MgAl-LDO[J]. Chinese J. Inorg. Chem., 2012,28(6):1117-1124.

    27. [27]

      Andrunik M, Bajda T. Removal of pesticides from waters by adsorption: Comparison between synthetic zeolites and mesoporous silica materials[J]. A Rev. Mater., 2021,14(13)3532.

    28. [28]

      YU F, Pan L S, LIU Y J, WU Z M, LI Y F, DING J. Preparation of bisphenol F molecularly imprinted polymer and its adsorption properties for bisphenol F in aqueous phase[J]. J. Anal. Sci. Technol., 2017,33(4):493-498.

    29. [29]

      FAN D H, MENG X T, FU J X. Adsorption mechanism of low concentration ammonia nitrogen wastewater by MK-GP zeolite molecular sieve[J]. China Water Wastewater, 2022,38(5):70-73.

    30. [30]

      Zhao Q H, Long C H, Jiang Z Y, Yin W W, Tang A D. Highly stable natural zeolite/montmorillonite hybrid microspheres with green preparation process for efficient adsorption of ammonia nitrogen in wastewater[J]. Appl. Clay Sci., 2023,243106787. doi: 10.1016/j.clay.2022.106787

    31. [31]

      GUO Z W. Mechanism of adsorption of ammonia nitrogen waste liquid by modified zeolite molecular sieve. Wuhan: Wuhan Institute of Technology, 2022: 38-48

    32. [32]

      LUO J T, GUO Y F, ZHANG J Q, Li K N, TANG Y T, GUO Q H. Synthesis and adsorption properties of NaA molecular sieve based on fly ash[J]. Chemical Research, 2021,32(2):160-164.

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    3. [3]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    17. [17]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(2)
  • Abstract views(439)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return