Citation: Yuantao CAI, Kun WANG, Xinchen GUO, Yingyi LU, Huiqi ZHANG, Yiyao HAN, Yunlong XIE, Xiangrong YE. Construction of fly ash-based NaA/NaX double crystal zeolite and its synergistic adsorption of ammonia nitrogen[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 124-134. doi: 10.11862/CJIC.20230359 shu

Construction of fly ash-based NaA/NaX double crystal zeolite and its synergistic adsorption of ammonia nitrogen

Figures(9)

  • The synthesis of zeolite molecular sieves (referred to as GFS) using fly ash as a raw material was carried out in three stages. The method employed for this synthesis was called"combined modification three-step synthesis", which involved ultrasonic-assisted alkali fusion microwave crystallization combined with waste glass/13X seed/ NaH2PO4 impregnation. To compare the results, traditional alkali fusion hydrothermal synthesis was used to synthesize zeolite molecular sieves (referred to as FS). In addition, zeolite molecular sieves (referred to as WFS) were synthesized using the"three-step synthesis"method of ultrasonic-assisted alkali fusion microwave crystallization. The materials were characterized using various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), energy-dispersive spectroscopy (EDS), and N2 adsorption-desorption analysis to determine their composition, morphology, and structure. The results indicated that WFS and GFS exhibited higher specific surface areas and well-developed mesopores and micropores compared to FS. Additionally, the crystal type of zeolite molecular sieves shifted from NaA single crystal to NaA/NaX twin crystal. Ammonia nitrogen adsorption experiments revealed that GFS (56.01 mg·g-1) showed better adsorption performance than WFS (49.17 mg·g-1) and FS (39.75 mg·g-1). The adsorption of ammonia nitrogen follows the second-order kinetics model and the Langmuir model, as indicated by kinetic and thermodynamic data. This process primarily relies on ion exchange and is both spontaneous and exothermic. Lower temperatures enhance the adsorption of ammonia nitrogen.
  • 加载中
    1. [1]

      Huang H M, Zhang P, Zhang Z, Liu J H, Xiao J, Gao F M. Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology[J]. J. Clean. Prod., 2016,127:302-310. doi: 10.1016/j.jclepro.2016.04.002

    2. [2]

      LI X G, ZHAO L, RUAN D K, ZHUO J D, GONG B, YANG T X, ZHANG Y, ZENG Y P, GUAN W X. Synthesis and preparation of fly ash-based X-type zeolite zeolite and its ammonia removal performance[J]. Bull. Am. Ceram. Soc., 2018,37(11):3663-3668.

    3. [3]

      Liu Y, Yan C J, Zhang Z H, Wang H Q. A comparative study on fly ash, geopolymer and faujasite block for Pb removal from aqueous solution[J]. Fuel, 2016,185:181-189. doi: 10.1016/j.fuel.2016.07.116

    4. [4]

      Zhang X Y, Li C Q, Zheng S L, Sun Z M. A review of the synthesis and application of zeolites from coal-based solid wastes[J]. Int. J. Miner. Metall. Mater., 2022,29(1):1-21. doi: 10.1007/s12613-021-2256-8

    5. [5]

      Li H Q, Hui J B, Wang C Y, Bao W J, Sun Z H. Removal of sodium (Na2O) from alumina extracted coal fly ash by a mild hydrothermal process[J]. Hydrometallurgy, 2015,153:1-5. doi: 10.1016/j.hydromet.2015.02.001

    6. [6]

      Yao Z T, Ye Y, Xia M S. Synthesis and characterization of lithium zeolites with ABW type from coal fly ash[J]. Environ. Prog. Sustain. Energy, 2013,32(3):790-796. doi: 10.1002/ep.11689

    7. [7]

      Zhou L, Chen Y L, Zhang X H, Tian F M, Zu Z N. Zeolites developed from mixed alkali modified coal fly ash for adsorption of volatile organic compounds[J]. Mater. Lett., 2014,119:140-142. doi: 10.1016/j.matlet.2013.12.097

    8. [8]

      Chen B, Luo Z W, Lu A X. Preparation of sintered foam glass with high fly ash content[J]. Mater. Lett., 2011,65(23/24):3555-3558.

    9. [9]

      LI J J, DAN H B, XIE W, ISLAM N, YANG L M, YE X K, ZHU J B. Preparation of magnetic adsorbents for fly ash and phosphorus adsorption mechanism[J]. Chinese J. Inorg. Chem., 2018,34(8):1455-1462.

    10. [10]

      Shigemoto N, Hayashi H, Miyaura K. Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction[J]. J. Mater. Sci, 1993,28(17):4781-4786. doi: 10.1007/BF00414272

    11. [11]

      CHEN J, SUN D K, DONG S H, HUANG M, XU Q H. Microwave calcined kaolin and synthetic detergent aids 4A zeolite[J]. Chinese J. Inorg. Chem., 2000(5):769-774.

    12. [12]

      Dere Ozdemir O, Piskin S. A novel synthesis method of zeolite X from coal fly ash: Alkaline fusion followed by ultrasonic-assisted synthesis method[J]. Waste Biomass Valori., 2019,10(1):143-154. doi: 10.1007/s12649-017-0050-7

    13. [13]

      Ejtemaei M, Sadighi S, Rashidzadeh M, Khorram S, Back J O, Penner S, Noisternig N, Salari D, Niaei A. Investigating the cold plasma surface modification of kaolin- and attapulgite-bound zeolite A[J]. J. Ind. Eng. Chem., 2022,106:113-127. doi: 10.1016/j.jiec.2021.10.020

    14. [14]

      Zhang B P, Chen Y L, Wei L, Zu Z N. Preparation of molecular sieve X from coal fly ash for the adsorption of volatile organic compounds[J]. Microporous Mesoporous Mater., 2012,156:36-39. doi: 10.1016/j.micromeso.2012.02.016

    15. [15]

      WEI E N. Study on the preparation and transformation mechanism of different dipolymer zeolite (NaA/NaX/SOD) microspheres and their adsorption properties for Pb2+. Nanning: Guangxi University, 2022: 51-56

    16. [16]

      Belviso C, Cavalcante F, Javier Huertas F, Lettino A, Ragone P, Fiore S. The crystallisation of zeolite (X- and A-type) from fly ash at 25 ℃ in artificial sea water[J]. Microporous Mesoporous Mater., 2012,162:115-121. doi: 10.1016/j.micromeso.2012.06.028

    17. [17]

      Belviso C, Agostinelli E, Belviso S, Cavalcante F, Pascucci S, Peddis D, Varvaro G, Fiore S. Synthesis of magnetic zeolite at low temperature using a waste material mixture: Fly ash and red mud[J]. Microporous Mesoporous Mater., 2015,202:208-216. doi: 10.1016/j.micromeso.2014.09.059

    18. [18]

      Zhang Q K, Ma B Z, Wang C Y, Chen Y Q, Zhang W J. Comprehensive utilization of complex rubidium ore resources: Mineral dissociation and selective leaching of rubidium and potassium[J]. Int. J. Miner. Metall. Mater., 2023,30(5):857-867. doi: 10.1007/s12613-022-2436-1

    19. [19]

      CUI J X, WANG L Y, LI Y, HE Y, WANG R, HAN J L. Preparation and characterization of 4A zeolite based on water quenched slag and fly ash[J]. Inorg. Chem. Front., 2022,54(4):135-140.

    20. [20]

      Hae J L, Young M K, Oh S K, Ik J K. Structural and morphological transformation of NaX zeolite crystals at high temperature[J]. J. Eur. Ceram., 2007,27(2/3):561-564.

    21. [21]

      BAI F, Ma H W, ZHANG X H. Experimental study on hydrothermal synthesis of 13X zeolite molecular sieve from potassium feldspar powder[J]. Bull. Mineral. Petrol. Geochem., 2004(1):10-14.

    22. [22]

      Gholipour F, Mofarahi M. Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: Experimental and thermodynamic modeling[J]. J. Supercrit. Fluid, 2016,111:47-54. doi: 10.1016/j.supflu.2016.01.008

    23. [23]

      Zhou T, Yang D H, Wang Y J, Chen J S, Chen Q, Liu D W, Liu Z W. Low-pressure-RF plasma modification of UiO-66 and its application in methylene blue adsorption[J]. Plasma Sci. Technol., 2023,25(8):138-145.

    24. [24]

      Fu C Y, Tan Z M, Cheng J F, Xie J L, Dai X Z, Du Y Y, Zhu S, Wang S Q, Yan M H. Effective removal of cesium by ammonium molybdophosphate-polyethylene glycol magnetic nanoparticles[J]. J. Environ. Chem. Eng., 2023,11(5)110544. doi: 10.1016/j.jece.2023.110544

    25. [25]

      WU C H, ZHENG G Y, WANG J L, MO S Y, ZOU Z G, LONG F. Preparation of highly dispersible nano-diaspore and nano-alumina and their adsorption properties on methyl orange[J]. Chinese J. Inorg. Chem., 2019,35(3):449-458.

    26. [26]

      XUE J L, CAO G T, NI Z M. Adsorption performance and mechanism of AB24 on MgAl-LDO[J]. Chinese J. Inorg. Chem., 2012,28(6):1117-1124.

    27. [27]

      Andrunik M, Bajda T. Removal of pesticides from waters by adsorption: Comparison between synthetic zeolites and mesoporous silica materials[J]. A Rev. Mater., 2021,14(13)3532.

    28. [28]

      YU F, Pan L S, LIU Y J, WU Z M, LI Y F, DING J. Preparation of bisphenol F molecularly imprinted polymer and its adsorption properties for bisphenol F in aqueous phase[J]. J. Anal. Sci. Technol., 2017,33(4):493-498.

    29. [29]

      FAN D H, MENG X T, FU J X. Adsorption mechanism of low concentration ammonia nitrogen wastewater by MK-GP zeolite molecular sieve[J]. China Water Wastewater, 2022,38(5):70-73.

    30. [30]

      Zhao Q H, Long C H, Jiang Z Y, Yin W W, Tang A D. Highly stable natural zeolite/montmorillonite hybrid microspheres with green preparation process for efficient adsorption of ammonia nitrogen in wastewater[J]. Appl. Clay Sci., 2023,243106787. doi: 10.1016/j.clay.2022.106787

    31. [31]

      GUO Z W. Mechanism of adsorption of ammonia nitrogen waste liquid by modified zeolite molecular sieve. Wuhan: Wuhan Institute of Technology, 2022: 38-48

    32. [32]

      LUO J T, GUO Y F, ZHANG J Q, Li K N, TANG Y T, GUO Q H. Synthesis and adsorption properties of NaA molecular sieve based on fly ash[J]. Chemical Research, 2021,32(2):160-164.

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    3. [3]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    8. [8]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    9. [9]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    10. [10]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    11. [11]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    12. [12]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    15. [15]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    16. [16]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

Metrics
  • PDF Downloads(2)
  • Abstract views(544)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return