Citation: Wenda WANG, Jinku MA, Yuzhu WEI, Shuaishuai MA. Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353 shu

Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater

  • Corresponding author: Shuaishuai MA, machem@jsut.edu.cn
  • Received Date: 25 September 2023
    Revised Date: 24 January 2024

Figures(12)

  • A metal - free photocatalyst was developed and synthesized through a single - step thermal treatment process involving banana peel (BP) and urea. The close interfacial connection between biomass-derived carbon (BC) and porous graphite carbon nitride (pg - C3N4) resulted in an increased specific surface area, expanded photo-response range, effective migration of photo-induced electrons, and enhanced stability. The reaction rate constant of pg-C3N4/BC for degradation oxytetracycline (OTC) in artificial seawater was 9.4 times higher than that of pristine pg-C3N4 after 70 min of visible-light illumination, and pg-C3N4/BC also performed better photocatalytic degradation on OTC in the continuous flow reaction process owing to facilitated photogenerated charge separation and transfer. Additionally, a potential photocatalytic mechanism was proposed to explain the enhanced performance of pg-C3N4/BC composites.
  • 加载中
    1. [1]

      Wang J Z, Zang L L, Wang L B, Tian Y T, Yang Z Y, Yue Y M, Sun L G. Magnetic cobalt ferrite/reduced graphene oxide (CF/rGO) porous balls for efficient photocatalytic degradation of oxytetracycline[J]. J. Environ. Chem. Eng., 2022,10(5)108259. doi: 10.1016/j.jece.2022.108259

    2. [2]

      Brumovský M, Bečanová J, Kohoutek J, Borghini M, Nizzetto L. Contaminants of emerging concern in the open sea waters of the Western Mediterranean[J]. Environ. Pollut., 2017,229:976-983. doi: 10.1016/j.envpol.2017.07.082

    3. [3]

      Zhang R J, Yu K F, Li A, Wang Y H, Huang X Y. Antibiotics in corals of the South China Sea: Occurrence, distribution, bioaccumulation, and considerable role of coral mucus[J]. Environ. Pollut., 2019,250:503-510. doi: 10.1016/j.envpol.2019.04.036

    4. [4]

      Wang S, Ma X X, Liu Y L, Yi X S, Du G C, Li J. Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full‑scale membrane bioreactor wastewater treatment plants[J]. Bioresour. Technol., 2020,302122825. doi: 10.1016/j.biortech.2020.122825

    5. [5]

      Lu D W, Xu S, Qiu W, Sun Y, Liu X B, Yang J J, Ma J. Adsorption and desorption behaviors of antibiotic ciprofloxacin on functionalized spherical MCM-41 for water treatment[J]. J. Cleaner. Prod., 2020,264121644. doi: 10.1016/j.jclepro.2020.121644

    6. [6]

      Aseman-Bashiz E, Rezaee A, Moussavi G. Ciprofloxacin removal from aqueous solutions using modified electrochemical Fenton processes with iron green catalysts[J]. J. Mol. Liq., 2021,324114694. doi: 10.1016/j.molliq.2020.114694

    7. [7]

      Zhang N Q, Xue C J, Wang K, Fang Z Q. Efficient oxidative degradation of fluconazole by a heterogeneous Fenton process with Cu-Ⅴ bimetallic catalysts[J]. Chem. Eng. J., 2020,380122516. doi: 10.1016/j.cej.2019.122516

    8. [8]

      Li S Y, Wang J, Ye Y Y, Tang Y M, Li X K, Gu F L, Li L S. Composite Si-O-metal network catalysts with uneven electron distribution: Enhanced activity and electron transfer for catalytic ozonation of carbamazepine[J]. Appl. Catal. B-Environ., 2020,263118311. doi: 10.1016/j.apcatb.2019.118311

    9. [9]

      Chen Y X, Cheng M, Lai C, Wei Z, Zhang G X, Li L, Tang C S, Du L, Wang G F, Liu H D. The collision between g-C3N4 and QDs in the fields of energy and environment: Synergistic effects for efficient photocatalysis[J]. Small, 2023,19(14)2205902. doi: 10.1002/smll.202205902

    10. [10]

      Wang J L, Wang S Z. A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application[J]. Coord. Chem. Rev., 2022,453214338. doi: 10.1016/j.ccr.2021.214338

    11. [11]

      Chin J Y, Ahmad A L, Low S C. Graphitic carbon nitride photocatalyst for the degradation of oxytetracycline hydrochloride in water[J]. Mater. Chem. Phys., 2023,301127626. doi: 10.1016/j.matchemphys.2023.127626

    12. [12]

      Alhanash A M, Al-Namshah K S, Mohamed S K, Hamdy M S. One-pot synthesis of the visible light sensitive C-doped ZnO@g-C3N4 for high photocatalytic activity through Z-scheme mechanism[J]. Optik, 2019,186:34-40. doi: 10.1016/j.ijleo.2019.04.084

    13. [13]

      Li L L, Ma D K, Xu Q L, Huang S M. Constructing hierarchical ZnIn2S4/g-C3N4 S-scheme heterojunction for boosted CO2 photoreduction performance[J]. Chem. Eng. J., 2022,437135153. doi: 10.1016/j.cej.2022.135153

    14. [14]

      Zhang C, Qin D Y, Zhou Y, Qin F Z, Wang H, Wang W J, Yang Y, Zeng G M. Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: Morphology and defect evolution[J]. Appl. Catal. B-Environ., 2022,303120904. doi: 10.1016/j.apcatb.2021.120904

    15. [15]

      Nasri A, Jaleh B, Nezafat Z, Nasrollahzadeh M, Azizian S, Jang H W, Shokouhimehr M. Fabrication of g-C3N4/Au nanocomposite using laser ablation and its application as an effective catalyst in the reduction of organic pollutants in water[J]. Ceram. Int., 2021,47(3):3565-3572. doi: 10.1016/j.ceramint.2020.09.204

    16. [16]

      Liu Z, He X, Yang X J, Ding H K, Wang D B, Ma D C, Feng Q G. Synthesis of mesoporous carbon nitride by molten salt-assisted silica aerogel for rhodamine B adsorption and photocatalytic degradation[J]. J. Mater. Sci., 2021,56:11248-11265. doi: 10.1007/s10853-021-05994-z

    17. [17]

      Jin Z Y, Zhang Q T, Yuan S S, Ohno T. Synthesis high specific surface area nanotube g-C3N4 with two-step condensation treatment of melamine to enhance photocatalysis properties[J]. RSC Adv., 2015,5(6):4026-4029. doi: 10.1039/C4RA13355B

    18. [18]

      Asadzadeh-Khaneghah S, Habibi-Yangjeh A. g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: A review[J]. J. Cleaner Prod., 2020,276124319. doi: 10.1016/j.jclepro.2020.124319

    19. [19]

      Bharagav U, Reddy N R, Rao V N K, Ravi P, Sathish M, Rangappa D, Prathap K, Chakra C S, Shankar M, Appels L, Aminabhavi T M, Kakarla R R, Kumari M M. Bifunctional g-C3N4/carbon nanotubes/WO3 ternary nanohybrids for photocatalytic energy and environmental applications[J]. Chemosphere, 2023,311137030. doi: 10.1016/j.chemosphere.2022.137030

    20. [20]

      Dai K, Lu L H, Liu Q, Zhu G P, Wei X Q, Bai J, Xuan L L, Wang H. Sonication assisted preparation of graphene oxide/graphitic‑CN nanosheet hybrid with reinforced photocurrent for photocatalyst applications[J]. Dalton Trans., 2014,43(17):6295-6299. doi: 10.1039/c3dt53106f

    21. [21]

      Li Y B, Zhang H M, Liu P R, Wang D, Li Y, Zhao H J. Cross-linked g‑C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity[J]. Small, 2013,9(19):3336-3344. doi: 10.1002/smll.201203135

    22. [22]

      Han Y Y, Lu X L, Tang S F, Yin X P, Wei Z W, Lu T B. Water splitting: Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride[J]. Adv. Energy Mater., 2018,8(16)1870077. doi: 10.1002/aenm.201870077

    23. [23]

      Li S, Wang Z W, Zhao X T, Yang X, Liang G W, Xie X Y. Insight into enhanced carbamazepine photodegradation over biochar-based magnetic photocatalyst Fe3O4/BiOBr/BC under visible LED light irradiation[J]. Chem. Eng. J., 2019,360:600-611. doi: 10.1016/j.cej.2018.12.002

    24. [24]

      He B, Feng M, Chen X Y, Zhao D W, Sun J. One-pot construction of chitin-derived carbon/g-C3N4 heterojunction for the improvement of visible-light photocatalysis[J]. Appl. Surf. Sci., 2020,527(15)146737.

    25. [25]

      Zhang Y W, Liu J H, Wu G, Chen W. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production[J]. Nanoscale, 2012,4(17):5300-5303. doi: 10.1039/c2nr30948c

    26. [26]

      Mohamed M A, Zain M, Minggu L J, Kassim M B, Amin N A S, Salleh W, Salehmin M N I, Nasir M F M, Hir Z A M. Constructing bio-templated 3D porous microtubular C-doped g-C3N4 with tunable band structure and enhanced charge carrier separation[J]. Appl. Catal. B-Environ., 2018,236:265-279. doi: 10.1016/j.apcatb.2018.05.037

    27. [27]

      Xu Q L, Jiang C J, Cheng B, Yu J G. Enhanced visible-light photocatalytic H2-generation activity of carbon/g-C3N4 nanocomposites prepared by two-step thermal treatment[J]. Dalton Trans., 2017,46(32):10611-10619. doi: 10.1039/C7DT00629B

    28. [28]

      Fu J W, Zhu B C, Jiang C J, Cheng B, You W, Yu J G. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity[J]. Small, 2017,13(15)1603938. doi: 10.1002/smll.201603938

    29. [29]

      Tong Z W, Yang D, Sun Y Y, Nan Y H, Jiang Z Y. Tubular g-C3N4 isotype heterojunction: Enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer[J]. Small, 2016,12(30):4093-4101. doi: 10.1002/smll.201601660

    30. [30]

      Liu H, Xu Z Z, Zhang Z, Ao D. Highly efficient photocatalytic H2 evolution from water over CdLa2S4/mesoporous g-C3N4 hybrids under visible light irradiation[J]. Dalton Trans., 2016,192:234-241.

    31. [31]

      Wu X Y, Li S M, Wang B, Liu J H, Yu M. From biomass chitin to mesoporous nanosheets assembled loofa sponge-like N-doped carbon/g-C3N4 3D network architectures as ultralow-cost bifunctional oxygen catalysts[J]. Mesoporous Mater., 2017,240:216-226. doi: 10.1016/j.micromeso.2016.11.022

    32. [32]

      Liu X L, Wang P, Zhai H S, Zhang Q Q, Huang B B, Wang Z Y, Liu Y Y, Dai Y, Qin X Y, Zhang X Y. Synthesis of synergetic phosphorus and cyano groups (CN) modified g-C3N4 for enhanced photocatalytic H2 production and CO2 reduction under visible light irradiation[J]. Appl. Catal. B-Enviton., 2018,232:521-530. doi: 10.1016/j.apcatb.2018.03.094

    33. [33]

      Lin K W, Wang Z F, Hu Z C, Luo P, Yang X Y, Zhang X, Rafiq M, Huang F, Cao Y. Amino-functionalised conjugated porous polymers for improved photocatalytic hydrogen evolution[J]. J. Mater. Chem. A, 2019,7(32):19087-19093. doi: 10.1039/C9TA06219J

    34. [34]

      Guo F, Huang X L, Chen Z H, Cao L W, Cheng X F, Chen L Z, Shi W L. Construction of Cu3P-ZnSnO3-g-C3N4 pnn heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics[J]. Sep. Purif. Technol., 2021,265118477. doi: 10.1016/j.seppur.2021.118477

    35. [35]

      Xue Y J, Guo Y C, Liang Z Q, Cui H Z, Tian J. Porous g-C3N4 with nitrogen defects and cyano groups for excellent photocatalytic nitrogen fixation without co-catalysts[J]. J. Colloid Interface Sci., 2019,556:206-213. doi: 10.1016/j.jcis.2019.08.067

    36. [36]

      Zhang W Q, Shi W L, Sun H R, Shi Y X, Luo H, Jing S R, Fan Y Q, Guo F, Lu C Y. Fabrication of ternary CoO/g-C3N4/Co3O4 nanocomposite with p-n-p type heterojunction for boosted visible-light photocatalytic performance[J]. J. Chem. Technol. Biotechnol., 2021,96(7):1854-1863. doi: 10.1002/jctb.6703

    37. [37]

      Shi Y X, Li L L, Xu Z, Sun H R, Amin S, Guo F, Shi W L, Li Y. Engineering of 2D/3D architectures type Ⅱ heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation[J]. Mater. Res. Bull., 2022,150111789. doi: 10.1016/j.materresbull.2022.111789

    38. [38]

      Lian Y R, Zhu W K, Yao W T, Yi H, Hu Z W, Duan T, Cheng W C, Wei X F, Hu G Z. A biomass carbon mass coated with modified TiO2 nanotube/graphene for photocatalysis[J]. New J. Chem., 2017,41(10):4212-4219. doi: 10.1039/C6NJ04005E

    39. [39]

      Devi T B, Mohanta D. Ahmaruzzaman M, Biomass derived activated carbon loaded silver nanoparticles: An effective nanocomposites for enhanced solar photocatalysis and antimicrobial activities[J]. J. Ind. Eng. Chem., 2019,76:160-172. doi: 10.1016/j.jiec.2019.03.032

    40. [40]

      Wu G, Hu Y, Liu Y, Zhao J J, Chen X L, Whoehling V, Plesse C, Nguyen G T, Vidal F, Chen W. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator[J]. Nat. Commun., 2015,6(1)7258. doi: 10.1038/ncomms8258

    41. [41]

      Xia X Y, Deng N, Cui G W, Xie J F, Shi X F, Zhao Y Q, Wang Q, Wang W, Tang B. NIR light induced H2 evolution by a metal-free photocatalyst[J]. Chem. Commun., 2015,51(54):10899-10902. doi: 10.1039/C5CC02589C

    42. [42]

      Wang C T, Dang Y C, Pang X X, Zhang L, Bian Y J, Duan W, Yang C J, Zhen Y Z, Fu F. A novel S-scheme heterojunction based on 0D/3D CeO2/Bi2O2CO3 for the photocatalytic degradation of organic pollutants[J]. New J. Chem., 2022,46(33):15987-15998. doi: 10.1039/D2NJ03192B

    43. [43]

      Bai X J, Wang L, Wang Y J, Yao W Q, Zhu Y F. Enhanced oxidation ability of g-C3N4 photocatalyst via C60 modification[J]. Appl. Catal. B-Environ., 2014,152:262-270.

    44. [44]

      Qiu P X, Xu C M, Chen H, Jiang F, Wang X, Lu R M, Zhang X R. One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity[J]. Appl. Catal. B-Environ., 2017,206:319-327. doi: 10.1016/j.apcatb.2017.01.058

    45. [45]

      Patnaik S, Martha S, Acharya S, Parida K. An overview of the modification of g-C3N4 with high carbon containing materials for photocatalytic applications[J]. Inorg. Chem. Front., 2016,3(3):336-347. doi: 10.1039/C5QI00255A

    46. [46]

      Wu Y T, Li X, Liu C Q, Chang X J, Hu X F. Studies on the active radicals in synthesized inverse opal photonic crystal and its effect on photocatalytic removal of organic pollutants[J]. J. Mol. Liq., 2020,320114414. doi: 10.1016/j.molliq.2020.114414

    47. [47]

      Wang F L, Wang Y F, Feng Y P, Zeng Y Q, Xie Z J, Zhang Q X, Su Y H, Chen P, Liu Y, Yao K, Lv W Y, Liu G G. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen[J]. Appl. Catal. B-Environ., 2018,221:510-520. doi: 10.1016/j.apcatb.2017.09.055

    48. [48]

      Wu Y L, Wang F L, Jin X Y, Zheng X S, Wang Y F, Wei D D, Zhang Q X, Feng Y P, Xie Z J, Chen P, Liu H J, Liu G G. Highly active metal-free carbon dots/g-C3N4 hollow porous nanospheres for solar-light-driven PPCPs remediation: Mechanism insights, kinetics and effects of natural water matrices[J]. Water Res., 2020,172115492. doi: 10.1016/j.watres.2020.115492

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    3. [3]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    4. [4]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    5. [5]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    6. [6]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    9. [9]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    10. [10]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    15. [15]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    16. [16]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    17. [17]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    18. [18]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    19. [19]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    20. [20]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

Metrics
  • PDF Downloads(0)
  • Abstract views(84)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return