Citation: Kai CHEN, Fengshun WU, Shun XIAO, Jinbao ZHANG, Lihua ZHU. PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350 shu

PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis

  • Corresponding author: Lihua ZHU, zhulihua156@163.com
  • Received Date: 21 September 2023
    Revised Date: 24 May 2024

Figures(11)

  • Melamine, RuCl3, and carbon black were dispersed in ethanol with a certain proportion, and a nitrogen-doped carbon (NC)-supported Ru catalyst (Ru/NC) was synthesized by spin evaporation drying and high-temperature thermal treatment. The PtRu/NC catalysts with different Pt and Ru contents were synthesized by sodium borohydride liquid phase chemical reduction, which was used for electrocatalytic methanol oxidation reaction (MOR) and hydrogen evolution reaction (HER) by water electrolysis. The results showed that Pt1Ru/NC (mass fraction: 1.14% for Pt, 0.54% for Ru) had the best MOR performance among as-synthesized catalysts, with a mass activity of 4.96 A·mgPtRu-1, and it maintained 91.1% of the initial mass activity after 10 000 s stability test. In addition, when the current density was 100 mA·cm-2, Pt1Ru/NC exhibited the lowest overpotential (103 mV) and the smallest Tafel slope (15.29 mV·dec-1) for HER. The characterization techniques of X-ray diffractometer (XRD), X -ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and STEM-energy-dispersive X-ray spectroscopy (STEM-EDS) were used to analyze the reasons for excellent catalytic performance of Pt1Ru/NC, as follows: firstly, the PtRu bimetallic nanoparticles are highly dispersed on NC; secondly, Pt is loaded on Ru with nanoclusters or single atoms, forming Pt-Ru phase segregation; thirdly, there is a synergistic effect between Pt, Ru, and N.
  • 加载中
    1. [1]

      Zheng H H, Wang Z X. Measurement and comparison of export sophistication of the new energy industry in 30 countries during 2000-2015[J]. Renew. Sus. Energ. Rev., 2019,108:140-158. doi: 10.1016/j.rser.2019.03.038

    2. [2]

      ZOU C N, ZHAO Q, ZHANG G S. Energy revolution: From fossil energy to new energy[J]. Natural Gas Industry, 2016,36(1):1-10.  

    3. [3]

      Yang X, Guo Y, Liu Q, Zhang D M. Dynamic Co-evolution analysis of low-carbon technology innovation compound system of new energy enterprise based on the perspective of sustainable development[J]. J. Clean. Prod., 2022,349131330. doi: 10.1016/j.jclepro.2022.131330

    4. [4]

      Pei A, Xie R K, Zhang Y, Feng Y L, Wang W Z, Zhang S F, Huang Z N, Zhu L H, Chai G L, Yang Z Q, Gao Q S, Ye H Q, Shang C X, Chen B H, Guo Z X. Effective electronic tuning of Pt single atoms via heterogeneous atomic coordination of (Co, Ni)(OH)2 for efficient hydrogen evolution[J]. Energy Environ. Sci., 2023,16(3):1035-1048. doi: 10.1039/D2EE02785B

    5. [5]

      Qiao M, Meng F Y, Wu H, Wei Y, Zeng X F, Wang J X. PtCuRu nano-flowers with Ru-rich edge for efficient fuel-cell electrocatalysis[J]. Small, 2022,18(48)2204720. doi: 10.1002/smll.202204720

    6. [6]

      Yang X B, Wang Q, Qing S J, Gao Z, Tong X L, Yang N J. Modulating electronic structure of an Au-nanorod-core-PdPt-alloy-shell catalyst for efficient alcohol electro-oxidation[J]. Adv. Energy Mater., 2021,11(26)2100812. doi: 10.1002/aenm.202100812

    7. [7]

      He S L, Liu Y, Li H J, Wu Q B, Ma D S, Cao D J, B J, Yang Y Y, Cui C H. Highly dispersed Mo sites on Pd nanosheets enable selective ethanol-to-acetate conversion[J]. ACS Appl. Mater. Interfaces, 2021,13(11):13311-13318. doi: 10.1021/acsami.1c01010

    8. [8]

      Zhou Y, Liu D Y, Qiao W, Liu Z, Yang J, Feng L G. Ternary synergistic catalyst system of Pt-Cu-Mo2C with high activity and durability for alcohol oxidation[J]. Mater. Today Phys., 2021,17100357. doi: 10.1016/j.mtphys.2021.100357

    9. [9]

      Liu C, Zhou W, Zhang J F, Chen Z L, Liu S L, Zhang Y, Yang J X, Xu L Y, Hu W B, Chen Y N, Deng Y D. Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction[J]. Adv. Energy Mater., 2020,10(46)2001397. doi: 10.1002/aenm.202001397

    10. [10]

      Wan T T, Huang X, Li S C, Li Q Y, Yang X L, Sun Z J, Xiang D, Wang K, Li P, Zhu M Z. Fabrication of 3D hollow acorn-shell-like PtBi intermetallics via a surfactant-free pathway for efficient ethylene glycol electrooxidation[J]. Nano Res., 2023,16(5):6560-6567. doi: 10.1007/s12274-022-5336-9

    11. [11]

      Jiang M H, Hu Y, Zhang W J, Wang L, Yang S Y, Liang J C, Zhang Z W, Zhang X L, Jin Z. Regulating the alloying degree and electronic structure of Pt-Au nanoparticles for high-efficiency direct C2+ alcohol fuel cells[J]. Chem. Mater., 2021,33(10):3767-3778. doi: 10.1021/acs.chemmater.1c00886

    12. [12]

      Pei A, Li G, Zhu L H, Huang Z N, Ye J Y, Chang Y C, Osman S M, Pao C W, Gao Q S, Chen B H, Luque R. Nickel hydroxide-supported Ru single atoms and Pd nanoclusters for enhanced electrocatalytic hydrogen evolution and ethanol oxidation[J]. Adv. Funct. Mater., 2022,32(51)2208587. doi: 10.1002/adfm.202208587

    13. [13]

      Zhang S F, Pei A, Li G, Zhu L H, Li G D, Wu F S, Lin S T, Chen W Q, Chen B H, Luque R. Pd/CuO-Ni (OH)2/C as a highly efficient and stable catalyst for the electrocatalytic oxidation of ethanol[J]. Green Chem., 2022,24(6):2438-2450. doi: 10.1039/D1GC04799J

    14. [14]

      Li F M, Huang L, Zaman S, Guo W, Liu H F, Guo X P, Xia B Y. Corrosion chemistry of electrocatalysts[J]. Adv. Mater., 2022,34(52)2200840. doi: 10.1002/adma.202200840

    15. [15]

      Wang S Y, Wang Z W, Chen F Z, Peng B, Xu J, Li J Z, Lv Y H, Kang Q, Xia A L, Ma L B. Electrocatalysts in lithium-sulfur batteries[J]. Nano Res., 2023,16(4):4438-4467. doi: 10.1007/s12274-022-5215-4

    16. [16]

      Wang Y, Zheng X B, Wang D S. Design concept for electrocatalysts[J]. Nano Res., 2022,15(3):1730-1752. doi: 10.1007/s12274-021-3794-0

    17. [17]

      Lu Y X, Zhou L, Wang S Y, Zou Y Q. Defect engineering of electrocatalysts for organic synthesis[J]. Nano Res., 2023,16(2):1890-1912. doi: 10.1007/s12274-022-4858-5

    18. [18]

      Zhang J, Zhang Q Y, Feng X L. Support and interface effects in water-splitting electrocatalysts[J]. Adv. Mater., 2019,31(31)1808167. doi: 10.1002/adma.201808167

    19. [19]

      Chen H, Liang X, Liu Y P, Ai X, Asefa T, Zou X X. Active site engineering in porous electrocatalysts[J]. Adv. Mater., 2020,32(44)2002435. doi: 10.1002/adma.202002435

    20. [20]

      Han S M, Ma Y, Yun Q B, Wang A L, Zhu Q S, Zhang H, He C H, Xia J, Meng X M, Gao L, Cao W B, Lu Q P. The synergy of tensile strain and ligand effect in PtBi nanorings for boosting electrocatalytic alcohol oxidation[J]. Adv. Funct. Mater., 2022,32(48)2208760. doi: 10.1002/adfm.202208760

    21. [21]

      Wu F X, Zhang L, Lai J P, Niu W X, Luque R, Xu G B. PtCu-O highly excavated octahedral nanostructures built with nanodendrites for superior alcohol electrooxidation[J]. J. Mater. Chem. A, 2019,7(14):8568-8572. doi: 10.1039/C9TA01236B

    22. [22]

      Shamraiz U, Ahmad Z, Raza B, Badshah A, Ullah S, Nadeem M A. CaO-promoted graphene-supported palladium nanocrystals as a universal electrocatalyst for direct liquid fuel cells[J]. ACS Appl. Mater. Interfaces, 2020,12(4):4396-4404. doi: 10.1021/acsami.9b16151

    23. [23]

      Mohanapriya S, Gopi D. Electro-oxidation of alcohols-recent advancements in synthesis and applications of palladium core-shell nanostructured model catalysts[J]. Renew. Sust. Energ. Rev., 2021,148111211. doi: 10.1016/j.rser.2021.111211

    24. [24]

      Lao X Z, Li Z, Yang L K, Zhang B, Ye W N, Fu A P, Guo P Z. Mono-dispersed ultrathin twisty PdBi alloys nanowires assemblies with tensile strain enhance C 2+ alcohols electrooxidation[J]. J. Energy Chem., 2023,79:279-290. doi: 10.1016/j.jechem.2022.12.056

    25. [25]

      Yalavarthi R, Yesilyurt O, Henrotte O, KmentŠ , Shalaev V M, Boltasseva A, Naldoni A. Multimetallic metasurfaces for enhanced electrocatalytic oxidations in direct alcohol fuel cells[J]. Laser Photonics Rev., 2022,16(7)2200137. doi: 10.1002/lpor.202200137

    26. [26]

      Zhang Y P, Gao F, Song P P, Wang J, Song T X, Wang C, Chen C Y, Jin L J, Li L, Zhu X, Du Y K. Superior liquid fuel oxidation electrocatalysis enabled by novel bimetallic PtNi nanorods[J]. J. Power Sources, 2019,425:179-185. doi: 10.1016/j.jpowsour.2019.04.001

    27. [27]

      Dinesh M M, Huang T Z, Yao S, Sun G X, Mao S. Hafnium sulphide-carbon nanotube composite as Pt support and active site-enriched catalyst for high performance methanol and ethanol oxidations in alkaline electrolytes[J]. J. Power Sources, 2019,410:204-212.

    28. [28]

      Tang J X, Chen Q S, You L X, Liao H G, Sun S G, Zhou S G, Xu Z N, Chen Y M, Guo G C. Screw-like PdPt nanowires as highly efficient electrocatalysts for methanol and ethylene glycol oxidation[J]. J. Mater. Chem. A, 2018,6(5):2327-2336. doi: 10.1039/C7TA09595C

    29. [29]

      Zhang K W, Wang C, Gao F, Guo S Y, Zhang Y P, Wang X M, Hata S, Shiraishi Y, Du Y K. Recent progress in ultrafine 3D Pdbased nanocubes with multiple structures for advanced fuel cells electrocatalysis[J]. Coord. Chem. Rev., 2022,472214775. doi: 10.1016/j.ccr.2022.214775

    30. [30]

      Zhang Y Y, Wang J G, Yu X F, Baer D R, Zhao Y, Mao L Q, Wang F Y, Zhu Z H. Potential-dynamic surface chemistry controls the electrocatalytic processes of ethanol oxidation on gold surfaces[J]. ACS Energy Lett., 2019,4(1):215-221. doi: 10.1021/acsenergylett.8b02019

    31. [31]

      Gao F, Zhang Y, Wu Z Y, You H M, Du Y K. Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis[J]. Coord. Chem. Rev., 2021,436213825. doi: 10.1016/j.ccr.2021.213825

    32. [32]

      Xiao S, Zhu L H, Osman S M, Feng Y L, Zhang S F, Li G D, Zeng S Y, Luque R, Chen B H. Ultrahigh stable covalent organic frameworkderived carbon-nitrogen-supported palladium nanoparticles for highly efficient electrocatalytic methanol and ethanol oxidation reactions[J]. Green Chem., 2022,24(15):5813-5821. doi: 10.1039/D2GC00826B

    33. [33]

      Hu C G, Dai L M. Doping of carbon materials for metal-free electrocatalysis[J]. Adv. Mater., 2019,31(7)1803672.

    34. [34]

      Kakaei K, Rahimi A, Husseindoost S, Hamidi M, Javan H, Balabandi A. Fabrication of Pt-CeO2 nanoparticles supported sulfonated reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation[J]. Int. J. Hydrog. Energy, 2016,41(6):3861-3869. doi: 10.1016/j.ijhydene.2016.01.013

    35. [35]

      Bao X B, Gong Y T, Chen Y Z, Zhang H, Wang Z, Mao S J, Xie L, Jiang Z, Wang Y. Carbon vacancy defect-activated Pt cluster for hydrogen generation[J]. J. Mater. Chem. A, 2019,7(25):15364-15370. doi: 10.1039/C9TA04010B

    36. [36]

      Zhou F, Ke X F, Chen Y H, Zhao M, Yang Y, Dong Y Q, Zou C, Chen X A, Jin H L, Zhang L J, Wang S. Electron-distribution control via Pt/NC and MoC/NC dual junction: Boosted hydrogen electro-oxidation and theoretical study[J]. J. Energy Chem., 2024,88:513-520. doi: 10.1016/j.jechem.2023.09.032

    37. [37]

      Yang L H, He T Q, Lai C J, Chen P, Hou Z Y. Selective oxidation of glycerol with oxygen in base-free solution over N-doped-carbon-supported Sb@PtSb2 hybrid[J]. Chin. J. Catal., 2020,41(3):494-502. doi: 10.1016/S1872-2067(19)63476-5

    38. [38]

      Li C, Zhang L, Zhang Y, Zhou Y, Sun J W, Ouyang X P, Wang X, Zhu J W, Fu Y S. PtRu alloy nanoparticles embedded on C2N nanosheets for efficient hydrogen evolution reaction in both acidic and alkaline solutions[J]. Chem. Eng. J., 2022,428131085. doi: 10.1016/j.cej.2021.131085

    39. [39]

      Khan A, Goepel M, Colmenares J C, Gläser R. Chitosan-based N-doped carbon materials for electrocatalytic and photocatalytic applications[J]. ACS Sustain. Chem. Eng., 2020,8(12):4708-4727. doi: 10.1021/acssuschemeng.9b07522

    40. [40]

      Zhang J M, Qu X M, Han Y, Shen L F, Yin S H, Li G, Jiang Y X, Sun S G. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance[J]. Appl. Catal. B-Environ., 2020,263118345. doi: 10.1016/j.apcatb.2019.118345

    41. [41]

      Fu X Y, Wan C Z, Huang Y, Duan X F. Noble metal based electro-catalysts for alcohol oxidation reactions in alkaline media[J]. Adv. Funct. Mater., 2022,32(11)2106401. doi: 10.1002/adfm.202106401

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    14. [14]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(0)
  • Abstract views(188)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return