Citation: Zhenghua ZHAO, Qin ZHANG, Yufeng LIU, Zifa SHI, Jinzhong GU. Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342 shu

Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid

Figures(10)

  • Two nickel(Ⅱ) and zinc(Ⅱ) coordination polymers, namely {[Ni(μ3-cpna)(μ-dpea)0.5]·H2O}n (1) and {[Zn(μ3-cpna)(μ-dpey)0.5]·H2O}n (2) have been constructed hydrothermally using 5-(2-carboxyphenyl)nicotinic acid (H2cpna), 1, 2-di(4-pyridyl)ethane (dpea), 1, 2-di(4-pyridyl)ethylene (dpey), and nickel and zinc chlorides at 160℃. The products were isolated as stable crystalline solids and were characterized by IR spectra, elemental analyses, thermogravimetric analyses, and single-crystal X-ray diffraction analyses. Single-crystal X-ray diffraction analyses revealed that two compounds crystallize in the monoclinic or orthorhombic systems, space groups, P21/c or Pbca. Both compounds show 3D metal-organic frameworks. Compound 2 exhibited an effective catalytic activity in the Knoevenagel condensation reaction at room temperature. Meanwhile, compound 2 showed an effective anti-wear performance in poly-α-olefine synthetic lubricant.
  • 加载中
    1. [1]

      Zheng J, Lu Z, Wu K, Ning G H, Li D. Coinage-metal-based cyclic trinuclear complexes with metal-metal interactions: Theories to experiments and structures to functions[J]. Chem. Rev., 2020,120(17):9675-9742. doi: 10.1021/acs.chemrev.0c00011

    2. [2]

      Chakraborty G, Park I H, Medishetty R, Vittal J J. Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications[J]. Chem. Rev., 2021,121(7):3751-3891. doi: 10.1021/acs.chemrev.0c01049

    3. [3]

      Gong W, Chen Z J, Dong J Q, Liu Y, Cui Y. Chiral metal-organic frameworks[J]. Chem. Rev., 2022,122(9):9078-9144. doi: 10.1021/acs.chemrev.1c00740

    4. [4]

      Gu J Z, Lu W G, Jiang L, Zhou H C, Lu T B. 3D porous metal-organic framework exhibiting selective adsorption of water over organic solvents[J]. Inorg. Chem., 2007,46(15):5835-5837. doi: 10.1021/ic7004908

    5. [5]

      Ji X X, Wu S Y, Song D X, Chen S Y, Chen Q, Gao E J, Xu J, Zhu X P, Zhu M C. A water-stable luminescent sensor based on Cd2+ coordination polymer for detecting nitroimidazole antibiotics in water[J]. Appl. Organomet. Chem., 2021,35(10)e6359. doi: 10.1002/aoc.6359

    6. [6]

      Alsharabasy A M, Pandit A, Farras P. Recent advances in the design and sensing applications of hemin/coordination polymer-based nanocomposites[J]. Adv. Mater., 2021,33(2)2003883. doi: 10.1002/adma.202003883

    7. [7]

      Gu Y F, Zheng J J, Otake K I, Shivanna M, Sakaki S, Yoshino H, Ohba M, Kawaguchi S, Wang Y, Li F T, Kitagawa S. Host-guest interaction modulation in porous coordination polymers for inverse selective CO2/C2H2 separation[J]. Angew. Chem. Int. Ed., 2021,60(21):11688-11694. doi: 10.1002/anie.202016673

    8. [8]

      Zhao X, Wang Y X, Li D S, Bu X H, Feng P Y. Metal-organic frameworks for separation[J]. Adv. Mater., 2018,30(37)1705189. doi: 10.1002/adma.201705189

    9. [9]

      Wei Y S, Zhang M, Zou R Q, Xu Q. Metal-organic framework-based catalysts with single metal sites[J]. Chem. Rev., 2020,120(21):12089-12174. doi: 10.1021/acs.chemrev.9b00757

    10. [10]

      Gu J Z, Wen M, Cai Y, Shi Z F, Nesterov D S, Kirillova M V, Kirillov A M. Cobalt(Ⅱ) coordination polymers assembled from unexplored pyridine-carboxylic acids: structural diversity and catalytic oxidation of alcohols[J]. Inorg. Chem., 2019,58(9):5875-5885. doi: 10.1021/acs.inorgchem.9b00242

    11. [11]

      ZHAO S Q, GU J Z. Synthesis, structures and catalytic activity in Knoevenagel condensation reaction of two diphenyl ether tetracarboxylic acid-Co(Ⅱ) coordination polymers[J]. Chinese J. Inorg. Chem., 2022,38(1):161-170.  

    12. [12]

      Wang Y J, Wang S Y, Zhang Y, Xia B, Li Q W, Wang Q L, Ma Y. Two zinc coordination polymers with photochromic behaviors and photo-controlled luminescence properties[J]. CrystEngComm, 2020,22(31):5162-5169. doi: 10.1039/D0CE00725K

    13. [13]

      Jeong A R, Shin J W, Jeong J H, Jeoung S, Moon H R, Kang S, Min K S. Porous and nonporous coordination polymers induced by pseudohalide ions for luminescence and gas sorption[J]. Inorg. Chem., 2020,59(21):15987-15999. doi: 10.1021/acs.inorgchem.0c02503

    14. [14]

      Zhang Q L, Xiong Y, Liu J Q, Zhang T T, Liu L L, Huang Y W. Porous coordination/covalent hybridized polymers synthesized from pyridine-zinc coordination compound and their CO2 capture ability, fluorescence and selective response properties[J]. Chem. Commun., 2018,54(85):12025-12028. doi: 10.1039/C8CC05930F

    15. [15]

      Gu J Z, Cui Y H, Liang X X, Wu J, Lv D Y, Kirillov A M. Structurally distinct metal-organic and H-bonded networks derived from 5-(6-carboxypyridin-3-yl)isophthalic acid: Coordination and template effect of 4, 4'-bipyridine[J]. Cryst. Growth Des., 2016,16(8):4658-4670. doi: 10.1021/acs.cgd.6b00735

    16. [16]

      Cheng X Y, Guo L R, Wang H Y, Gu J Z, Yang Y, Kirillova M V, Kirillov A M. Coordination polymers from biphenyl-dicarboxylate linkers: Synthesis, structural diversity, interpenetration, and catalytic properties[J]. Inorg. Chem., 2022,61(32):12577-12590. doi: 10.1021/acs.inorgchem.2c01488

    17. [17]

      Gu J Z, Gao Z Q, Tang Y. pH and auxiliary ligand influence on the structural variations of 5(2'-carboxylphenyl) nicotate coordination polymers[J]. Cryst. Growth Des., 2012,12(6):3312-3323. doi: 10.1021/cg300442b

    18. [18]

      Gao Z Q, Lv D Y, Li H J, Lu W G, Gu J Z. Synthesis, crystal structure and luminescent properties of a novel 2D sheet Cd(Ⅱ) coordination polymer [Cd(Cpna)(Py)]n[J]. Chin. J. Struct. Chem., 2013,32(7):1036-1040.

    19. [19]

      LÜ D Y, GAO Z Q, GU J Z, DOU W. Synthesis, crystal structure and magnetic properties of a coordination polymer[Ni(cpna)(bpy)(H2O)]n[J]. Chinese J. Inorg. Chem., 2011,27(11):2318-2322.  

    20. [20]

      Lv D Y, Gao Z Q, Gu J Z, Ren R, Dou W. Synthesis, crystal structures, magnetic and luminescent properties of nickel(Ⅱ) and cadmium(Ⅱ) coordination polymers bearing 5-(2'-carboxylphenyl) nicotate ligands[J]. Transit. Met. Chem., 2011,36:313-318. doi: 10.1007/s11243-011-9471-5

    21. [21]

      Li H J, Gao Z Q, Gu J Z. Synthesis, crystal structure and magnetic properties of 1D coordination polymer {[Co(cpna)(H2biim)]·H2O}n[J]. Asian J. Chem., 2015,27(1):39-42. doi: 10.14233/ajchem.2015.16664

    22. [22]

      Gao Z Q, Li H J, Gu J Z. Syntheses, crystal structures and magnetic properties of Ni(Ⅱ) and Mn(Ⅱ) coordination polymers constructed from 5-(2'-carboxylphenyl) nicotate and 2, 2'-biimidazole[J]. Chin. J. Struct. Chem., 2014,33(3):434-440.

    23. [23]

      Gu J Z, Wen M, Cai Y, Shi Z F, Arol A S, Kirillova M V, Kirillov A M. Metal-organic architectures assembled from multifunctional polycarboxylates: Hydrothermal self-assembly, structures, and catalytic activity in alkane oxidation[J]. Inorg. Chem., 2019,58(4):2403-2412. doi: 10.1021/acs.inorgchem.8b02926

    24. [24]

      Spek A L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors[J]. Acta Crystallogr. Sect. C, 2015,C71(1):9-18.

    25. [25]

      Cheng X Y, Guo L R, Wang H Y, Gu J Z, Yang Y, Kirillova M V, Kirillov A M. Coordination polymers constructed from and an adaptable pyridine-dicarboxylic acid linker: Assembly, diversity of structures, and catalysis[J]. Inorg. Chem., 2022,61(45):17951-17962. doi: 10.1021/acs.inorgchem.2c01855

    26. [26]

      Karmakar A, Rúbio G M D M, Guedes da Silva M F C, Pombeiro A J L. Synthesis of metallomacrocycle and coordination polymers with pyridine-based amidocarboxylate ligands and their catalytic activities towards the Henry and Knoevenagel reaction[J]. ChemistryOpen, 2018,7(11):865-877. doi: 10.1002/open.201800170

    27. [27]

      Almáši M, Zeleňák V, Opanasenko M, Čejka J. A novel nickel metal-organic framework with fluorite-like structure: Gas adsorption properties and catalytic activity in Knoevenagel condensation[J]. Dalton Trans., 2014,43(9):3730-3738. doi: 10.1039/c3dt52698d

    28. [28]

      Wang J H, Zhuang W P, Liang W F, Yan T T, Li T, Zhang L X, Li S. Inorganic nanomaterial lubricant additives for base fluids, to improve tribological performance: Recent developments[J]. Friction, 2022,10(5):645-676. doi: 10.1007/s40544-021-0511-7

  • 加载中
    1. [1]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    2. [2]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    3. [3]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    4. [4]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    5. [5]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    6. [6]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    7. [7]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    8. [8]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    9. [9]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    10. [10]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    11. [11]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    12. [12]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    13. [13]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    14. [14]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    15. [15]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    16. [16]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    17. [17]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    18. [18]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    19. [19]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    20. [20]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

Metrics
  • PDF Downloads(0)
  • Abstract views(109)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return