Citation: Liangqing LI, Jiajia LI, Qiting YE, Kaikai WANG, Liangsong LI. Preparation of mordenite zeolite membrane by intermittent hydrothermal synthesis and its application in isopropanol dehydration[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 316-324. doi: 10.11862/CJIC.20230327 shu

Preparation of mordenite zeolite membrane by intermittent hydrothermal synthesis and its application in isopropanol dehydration

  • Corresponding author: Liangqing LI, liliangqing@hsu.edu.cn
  • Received Date: 30 August 2023
    Revised Date: 12 December 2023

Figures(8)

  • A novel intermittent hydrothermal method was applied to synthesize mordenite zeolite membrane. The membrane was synthesized in a template-free synthetic solution using commercially available, economical, macroporous α-Al2O3 tube as the substrate. The out surface of the substrate was coated with a mordenite seed layer via a hotdip coating procedure. The influences of the traditional continuous heating method and the novel intermittent heating method on the morphology, microstructure and pervaporation performance for isopropanol dehydration of the mordenite membranes were compared. The impacts of molar ratios of Na2O/SiO2, SiO2/Al2O3, and NaF/SiO2 in the synthetic solution on the preparation of mordenite zeolite membranes under intermittent hydrothermal synthesis were investigated. The as-synthesized mordenite zeolite membrane showed maximum pervaporation performance for isopropanol dehydration under optimized synthetic solution composition with the molar ratios of Na2O/SiO2, SiO2/Al2O3, and NaF/SiO2 were 0.24, 16.7 and 0.25, respectively. The maximum water permeation flux was 5.60 kg·m-2·h-1 and the separation factor was greater than 10 000, respectively, in the dehydration of isopropanol/water mixture (9∶1, w/w) at 75 ℃.
  • 加载中
    1. [1]

      Lei Z G, Li C Y, Chen B H. Extractive distillation: A review[J]. Sep. Purif. Rev., 2003,32(2):121-213. doi: 10.1081/SPM-120026627

    2. [2]

      Nhien L C, Agarwal N, Lee M. Dehydration of isopropanol: A comparative review of distillation processes, heat integration, and intensification techniques[J]. Energies, 2023,16(16)5934. doi: 10.3390/en16165934

    3. [3]

      Hoof V V, Abeele L V, Buekenhoudt A, Dotremont C. Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol[J]. Sep. Purif. Technol., 2004,37(1):33-49. doi: 10.1016/j.seppur.2003.08.003

    4. [4]

      Zhang C, Peng L, Jiang J, Gu X H. Mass transfer model, preparation and applications of zeolite membranes for pervaporation dehydration: A review[J]. Chin. J. Chem. Eng., 2017,25(11):1627-1638. doi: 10.1016/j.cjche.2017.09.014

    5. [5]

      Wee S L, Tye C T, Bhatia S. Membrane separation process—Pervaporation through zeolite membrane[J]. Sep. Purif. Technol., 2008,63(3):500-516. doi: 10.1016/j.seppur.2008.07.010

    6. [6]

      Jyothi M S, Reddy K R, Soontarapa K, Naveen S, Raghu A V, Kulkarni R V, Suhas D P, Shetti N P, Nadagouda M N, Aminabhavi T M. Membranes for dehydration of alcohols via pervaporation[J]. J. Environ. Manage., 2019,242:415-429. doi: 10.1016/j.jenvman.2019.04.043

    7. [7]

      Vane L M. Membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation[J]. J. Chem. Technol. Biotechnol., 2019,94(2):343-365. doi: 10.1002/jctb.5839

    8. [8]

      Liu G P, Jin W Q. Pervaporation membrane materials: Recent trends and perspectives[J]. J. Membr. Sci., 2021,636119557. doi: 10.1016/j.memsci.2021.119557

    9. [9]

      Algieri C, Drioli E. Zeolite membranes: Synthesis and applications[J]. Sep. Purif. Technol., 2021,278119295. doi: 10.1016/j.seppur.2021.119295

    10. [10]

      Yue B, Liu S S, Chai Y C, Wu G J, Guan N J, Li L D. Zeolites for separation: fundamental and application[J]. J. Energy Chem., 2022,71:288-303. doi: 10.1016/j.jechem.2022.03.035

    11. [11]

      Luo Y W, Raza W, Yang J H, Li L Q, Lu Y. Recent advances in acid-resistant zeolite T membranes for dehydration of organics[J]. Chin. J. Chem. Eng., 2019,27(6):1449-1457. doi: 10.1016/j.cjche.2019.05.004

    12. [12]

      Li L Q, Li J J, Cheng L J, Wang J X, Yang J H. Microwave synthesis of high-quality mordenite membrane by a two-stage varying heating-rate procedure[J]. J. Membr. Sci., 2020,612118479. doi: 10.1016/j.memsci.2020.118479

    13. [13]

      Raza W, Wang J X, Yang J H, Tsuru T. Progress in pervaporation membranes for dehydration of acetic acid[J]. Sep. Purif. Technol., 2021,262118338. doi: 10.1016/j.seppur.2021.118338

    14. [14]

      Li L Q, Li J J, Wang X Y, Liu C C, Li L S. Preparation of high-performance zeolite membrane on a macroporous support by novel intermittent hydrothermal synthesis[J]. Microporous Mesoporous Mat., 2023,360112734. doi: 10.1016/j.micromeso.2023.112734

    15. [15]

      Li J J, Li L Q, Yang J H, Lu J M, Wang J Q. Organotemplate-free synthesis of ZSM-5 membrane for pervaporation dehydration of isopropanol[J]. Membr. Water Treat., 2019,10:353-360.

    16. [16]

      Yang J H, Li L Q, Li W Z, Wang J Q, Chen Z, Yin D H, Lu J M, Zhang Y, Guo H C. Tuning aluminum spatial distribution in ZSM-5 membranes: a new strategy to fabricate high performance and stable zeolite membranes for dehydration of acetic acid[J]. ChemComm, 2014,50(93):14654-14657.

    17. [17]

      Lu X F, Wang H S, Yang Y W, Wang Z B. Microstructural manipulation of MFI-type zeolite films/membranes: Current status and perspectives[J]. J. Membr. Sci., 2022,662120931. doi: 10.1016/j.memsci.2022.120931

    18. [18]

      Wang J X, Wang L, Li L Q, Li J J, Raza W, Lu J M, Yang J H. A green synthesis of MOR zeolite membranes by wet gel conversion for dehydration of water-acetic acid mixtures[J]. Sep. Purif. Technol., 2022,286120311. doi: 10.1016/j.seppur.2021.120311

    19. [19]

      Chen C, Cheng Y L, Peng L, Zhang C, Wu Z Q, Gu X H, Wang X Y, Murad S. Fabrication and stability exploration of hollow fiber mordenite zeolite membranes for isopropanol/water mixture separation[J]. Microporous Mesoporous Mat., 2019,274:347-355. doi: 10.1016/j.micromeso.2018.09.010

    20. [20]

      Lin X, Kikuchi E, Matsukata M. Preparation of mordenite membranes on α-alumina tubular supports for pervaporation of water-isopropyl alcohol mixtures[J]. ChemComm, 2000(11):957-958.

    21. [21]

      Navajas A, Mallada R, Téllez C, Coronas J, Menéndez M, Santamaría J. Study on the reproducibility of mordenite tubular membranes used in the dehydration of ethanol[J]. J. Membr. Sci., 2007,299(1/2):166-173.

    22. [22]

      Barrer R M. Zeolites and their synthesis[J]. Zeolites, 1981,1(3):130-140. doi: 10.1016/S0144-2449(81)80001-2

    23. [23]

      Occelli M L, Robson H E. Zeolite Synthesis. Washington: ACS Symposium Series, 1989: 11-27

    24. [24]

      Karthika S, Radhakrishnan T, Kalaichelvi P. A review of classical and nonclassical nucleation theories[J]. Cryst. Growth Des., 2016,16(11):6663-6681. doi: 10.1021/acs.cgd.6b00794

    25. [25]

      Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism[J]. Microporous Mesoporous Mat., 2005,82(1/2):1-78.

    26. [26]

      Wong W C, Au L T, Ariso C T, Yeung K L. Effects of synthesis parameters on the zeolite membrane growth[J]. J. Membr. Sci., 2001,191(1/2):143-163.

    27. [27]

      Aguado S, Gascón J, Jansen J C, Kapteijn F. Continuous synthesis of NaA zeolite membranes[J]. Microporous Mesoporous Mat., 2009,120(1/2):170-176.

    28. [28]

      Li L Q, Yang J H, Li J J, Wang J Q, Lu J M, Yin D H, Zhang Y. High performance ZSM-5 membranes on coarse macroporous α-Al2O3 supports for dehydration of alcohols[J]. AIChE J, 2016,62(8):2813-2824. doi: 10.1002/aic.15234

    29. [29]

      Li L Q, Yang J H, Li J J, Han P, Wang J X, Zhao Y, Wang J Q, Lu J M, Yin D H, Zhang Y. Synthesis of high performance mordenite membranes from fluoride-containing dilute solution under microwave-assisted heating[J]. J. Membr. Sci., 2016,512:83-92. doi: 10.1016/j.memsci.2016.03.056

    30. [30]

      Zhu J, Liu Z D, Endo A, Yanaba Yutaka, Yoshikawa T, Wakihara T, Okubo T. Ultrafast, OSDA-free synthesis of mordenite zeolite[J]. CrystEngComm, 2017,19(4):632-640. doi: 10.1039/C6CE02237E

    31. [31]

      Bronić J, Palčić A, Subotić B, Itani L, Valtchev V. Influence of alkalinity of the starting system on size and morphology of the zeolite A crystals[J]. Mater. Chem. Phys., 2012,132(2/3):973-976.

    32. [32]

      Xie Z K, Chen Q L, Chen B, Zhang C F. Influence of alkalinity on particle size distribution and crystalline structure in synthesis of zeolite beta[J]. Cryst. Eng., 2001,4(4):359-372. doi: 10.1016/S1463-0184(01)00027-2

    33. [33]

      Ren N, Bronić J, Subotić B, Lv X C, Yang Z J, Tang Y. Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 1: Influence of alkalinity on the structural, particulate and chemical properties of the products[J]. Microporous Mesoporous Mat., 2011,139(1/2/3):197-206.

    34. [34]

      Torres J C, Cardoso D. The influence of gel alkalinity in the synthesis and physicochemical properties of the zeolite[Ti, Al]-Beta[J]. Microporous Mesoporous Mat., 2008,113(1/2/3):204-211.

    35. [35]

      Suzuki Y, Wakihara T, Itabashi K, Ogura M, Okubo T. Cooperative effect of sodium and potassium cations on synthesis of ferrierite[J]. Top Catal., 2009,52:67-74. doi: 10.1007/s11244-008-9136-6

    36. [36]

      Zhu M H, Hua X M, Liu Y S, Hu H L, Li Y Q, Hu N, Kumakiri I, Chen X S, Kita H. Influences of synthesis parameters on preparation of acid-stable and reproducible mordenite membrane[J]. Ind. Eng. Chem. Res., 2016,55(47):12268-12275. doi: 10.1021/acs.iecr.6b02125

    37. [37]

      Chen X X, Wang J Q, Yin D H, Yang J H, Lu J M, Zhang Y, Chen Z. High-performance zeolite T membrane for dehydration of organics by a new varying temperature hot-dip coating method[J]. AIChE J., 2013,59(3):936-947. doi: 10.1002/aic.13851

    38. [38]

      Li Y Q, Zhu M H, Hu N, Zhang F, Wu T, Chen X S, Kita H. Scale-up of high performance mordenite membranes for dehydration of water-acetic acid mixtures[J]. J. Membr. Sci., 2018,564:174-183. doi: 10.1016/j.memsci.2018.07.024

    39. [39]

      Li G, Kikuchi E, Matsukata M. Separation of water-acetic acid mixtures by pervaporation using a thin mordenite membrane[J]. Sep. Purif. Technol., 2003,32(1/2/3):199-206.

    40. [40]

      Zhu M H, Xia S L, Hua X M, Feng Z J, Hu N, Zhang F, Kumakiri I, Lu Z H, Chen X S, Kita H. Rapid preparation of acid-stable and high dehydration performance mordenite membranes[J]. Ind. Eng. Chem. Res., 2014,53(49):19168-19174. doi: 10.1021/ie501248y

    41. [41]

      Zhou R F, Hu Z L, Hu N, Duan L Q, Chen X S, Kita H. Preparation and microstructural analysis of high-performance mordenite membranes in fluoride media[J]. Microporous Mesoporous Mat., 2012,156:166-170. doi: 10.1016/j.micromeso.2012.02.023

    42. [42]

      Zhang F, Xu L N, Hu N, Bu N, Zhou R F, Chen X S. Preparation of NaY zeolite membranes in fluoride media and their application in dehydration of bio-alcohols[J]. Sep. Purif. Technol., 2014,129:9-17. doi: 10.1016/j.seppur.2014.03.018

    43. [43]

      Shafiei K, Pakdehi S G, Moghaddam M K, Mohammadi T. Improvement of zeolite T membrane via clear solution gel in dehydration of methanol, ethanol, and 2-propanol[J]. Sep. Sci. Technol., 2014,49(6):797-802. doi: 10.1080/01496395.2013.870576

    44. [44]

      Kondo M, Kita H. Permeation mechanism through zeolite NaA and T-type membranes for practical dehydration of organic solvents[J]. J. Membr. Sci., 2010,361(1/2):223-231.

    45. [45]

      Wang S, Li L Q, Li J J, Wang J X, Pan E Z, Lu J M, Zhang Y, Yang J H. Sustainable synthesis of highly water-selective ZSM-5 membrane by wet gel conversion[J]. J. Membr. Sci., 2021,635119431. doi: 10.1016/j.memsci.2021.119431

  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    3. [3]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    4. [4]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    5. [5]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Weihua Jiang Yongsheng Zhou Qiaoqiao Teng . Progressive Teaching Model in the Practice and Exploration of Ideological and Political Education in Laboratory Courses: Taking the Organic Chemistry Experiment “Synthesis of Aspirin” as an Example. University Chemistry, 2024, 39(2): 99-104. doi: 10.3866/PKU.DXHX202306028

    8. [8]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    9. [9]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    10. [10]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Jiantao Zai Hongjin Chen Xiao Wei Li Zhang Li Ma Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023

    14. [14]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    15. [15]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    16. [16]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    17. [17]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

Metrics
  • PDF Downloads(0)
  • Abstract views(378)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return