Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation
- Corresponding author: Chunxin LÜ, chunxin.lu@mail.zjxu.edu.cn Wei ZHONG, weizhong@mail.zjxu.edu.cn
Citation: Zhanggui DUAN, Yi PEI, Shanshan ZHENG, Zhaoyang WANG, Yongguang WANG, Junjie WANG, Yang HU, Chunxin LÜ, Wei ZHONG. Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Lou J D, Lu L H, Liu W. Oxidation of alcohols with a new neutral system of potassium dichromate in dimethylformamide[J]. Synth. Commun., 1997,27(21):3701-3703. doi: 10.1080/00397919708007291
Firouzabadi H, Fakoorpour M, Hazarkhani H. Highly selective oxidation of primary and secondary benzylic alcohols by KMnO4/ZrOCl2·8H2O in diethyl ether[J]. Synth. Commun., 2001,31(24):3859-3862. doi: 10.1081/SCC-100108237
Tohma H, Kita Y. Hypervalent iodine reagents for the oxidation of alcohols and their application to complex molecule synthesis[J]. Adv. Synth. Catal., 2004,346(2/3):111-124.
Kogan V, Quintal M M, Neumann R. Regioselective alkene carbon-carbon bond cleavage to aldehydes and chemoselective alcohol oxidation of allylic alcohols with hydrogen peroxide catalyzed by[cis-Ru(Ⅱ)(dmp)2(H2O)2]2+ (dmp=2, 9-dimethylphenanthroline).[J]. Org. Lett., 2005,7(22):5039-5042. doi: 10.1021/ol052025e
Chang X X, Wang T, Zhao Z J, Yang P P, Greeley J, Mu R T, Zhang G, Gong Z M, Luo Z B, Chen J, Cui Y, Ozin G A, Gong J L. Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions[J]. Angew. Chem. Int. Ed., 2018,57(47):15415-15419. doi: 10.1002/anie.201805256
Liu J Y, Peng L W, Zhou Y, Lv L, Fu J, Lin J, Guay D, Qiao J L. Metal-organic-frameworks-derived Cu/Cu2O catalyst with ultrahigh current density for continuous-flow CO2 electroreduction[J]. ACS Sustain. Chem. Eng., 2019,7(18):15739-15746. doi: 10.1021/acssuschemeng.9b03892
Wu S C, Tan C S, Huang M H. Strong facet effects on interfacial charge transfer revealed through the examination of photocatalytic activities of various Cu2O-ZnO heterostructures[J]. Adv. Funct. Mater., 2017,27(9)1604635. doi: 10.1002/adfm.201604635
Wang X, Liu D P, Li J Q, Zhen J M, Zhang H J. Clean synthesis of Cu2O@CeO2 core@shell nanocubes with highly active interface[J]. NPG Asia Mater., 2015,7(1)e158. doi: 10.1038/am.2014.128
Zhang J, Ma H P, Liu Z F. Highly efficient photocatalyst based on all oxides WO3/Cu2O heterojunction for photoelectrochemical water splitting[J]. Appl. Catal. B-Environ., 2017,201:84-91. doi: 10.1016/j.apcatb.2016.08.025
Tan X Y, Yu C, Zhao C T, Huang H W, Yao X C, Han X T, Guo W, Cui S, Huang H L, Qiu J S. Restructuring of Cu2O to Cu2O@Cu-metal-organic frameworks for selective electrochemical reduction of CO2[J]. ACS Appl. Mater. Interfaces, 2019,11(10):9904-9910. doi: 10.1021/acsami.8b19111
Zhan G W, Fan L L, Zhou S F, Yang X. Fabrication of integrated Cu2O@HKUST-1@Au nanocatalysts via galvanic replacements toward alcohols oxidation application[J]. ACS Appl. Mater. Interfaces, 2018,10(41):35234-35243. doi: 10.1021/acsami.8b12380
Zuo S Y, Xu H M, Liao W, Yuan X J, Sun L, Li Q, Zan J, Li D Y, Xia D S. Molten-salt synthesis of g-C3N4-Cu2O heterojunctions with highly enhanced photocatalytic performance[J]. Colloid Surface A-Physicochem. Eng. Asp., 2018,546:307-315. doi: 10.1016/j.colsurfa.2018.03.013
Geng W J, Li W X, Liu L, Liu J H, Liu L Y, Kong X J. Facile assembly of Cu-Cu2O/N-reduced graphene oxide nanocomposites for efficient synthesis of 2-methylfuran[J]. Fuel, 2020,259116267. doi: 10.1016/j.fuel.2019.116267
Heo J N, Kim J, Do J Y, Park N K, Kang M. Self-assembled electron-rich interface in defected ZnO: rGO-Cu: Cu2O, and effective visible light-induced carbon dioxide photoreduction[J]. Appl. Catal. B-Environ., 2020,266118648. doi: 10.1016/j.apcatb.2020.118648
Wang Y D, Stack T D P. Galactose oxidase model complexes: Catalytic reactivities[J]. J. Am. Chem. Soc., 1996,118(51):13097-13098. doi: 10.1021/ja9621354
Sokolowski A, Leutbecher H, Weyhermüller T, Schnepf R, Bothe E, Bill E, Hildebrandt P, Wieghardt K. Phenoxyl-copper(Ⅱ) complexes: Models for the active site of galactose oxidase[J]. J. Biol. Inorg. Chem., 1997,2(4):444-453. doi: 10.1007/s007750050155
Wang Y D, Dubois J L, Hedman B, Hodgson K O, Stack T D P. Catalytic galactose oxidase models: Biomimetic Cu(Ⅱ)-phenoxyl-radical reactivity[J]. Science, 1998,279(5350):537-540. doi: 10.1126/science.279.5350.537
Alamsetti S K, Mannam S, Mutupandi P, Sekar G. Galactose oxidase model: Biomimetic enantiomer-differentiating oxidation of alcohols by a chiral copper complex[J]. Chem.-Eur. J., 2009,15(5):1086-1090. doi: 10.1002/chem.200802064
Hoover J M, Stahl S S. Highly practical copper(Ⅰ)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols[J]. J. Am. Chem. Soc., 2011,133(42):16901-16910. doi: 10.1021/ja206230h
CHENG P Y, ZHU L H, LÜ C X, LIU J H, ZHONG W, HE Y B. Efficient aerobic oxidation of alcohols over Cu-Cu2O nanoparticles supported on a porous polythiophene polymer[J]. Chinese J. Inorg. Chem., 2023,39(7):1223-1234.
Ma J M, Zhong W, You L L, Pei Y, Lu C X, Xiao Z Y, Shen Z Q, Jiang X J, Qian N L, Liu X M, Zhang S H. Band bending caused by forming heterojunctions in Cu-Cu2O/rGO-NH2 semiconductor materials and surface coordination of N-methylimidazole, and the intrinsic nature of synergistic effect on the catalysis of selective aerobic oxidation of alcohols[J]. Appl. Surf. Sci., 2022,605154563. doi: 10.1016/j.apsusc.2022.154563
Yang Y L, Zhong W, Ma R N, Lu C X, Shen Z Q, Liu X M, Zhang S H, Wang H M. Engineering the surface of cuprous oxide via surface coordination for efficient catalysis on aerobic oxidation of benzylic alcohols under ambient conditions[J]. Appl. Surf. Sci., 2021,543148840. doi: 10.1016/j.apsusc.2020.148840
Xu B Y, Senthilkumar S, Zhong W, Shen Z Q, Lu C X, Liu X M. Magnetic core-shell Fe3O4@Cu2O and Fe3O4@Cu2O-Cu materials as catalysts for aerobic oxidation of benzylic alcohols assisted by TEMPO and N-methylimidazole[J]. RSC Adv., 2020,10(44):26142-26150. doi: 10.1039/D0RA04064A
Shekhah O, Liu J, Fischer R A, Wöll C. MOF thin films: existing and future applications[J]. Chem. Soc. Rev., 2011,40(2):1081-1106. doi: 10.1039/c0cs00147c
Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chem. Rev., 2020,120(2):1438-1511. doi: 10.1021/acs.chemrev.9b00223
Wang G, He C T, Huang R, Mao J J, Wang D S, Li Y D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels[J]. J. Am. Chem. Soc., 2020,142(45):19339-19345. doi: 10.1021/jacs.0c09599
Feng J, Li M, Zhong Y H, Xu Y L, Meng X J, Zhao Z W, Feng C G. Hydrogenation of levulinic acid to γ-valerolactone over Pd@UiO-66-NH2 with high metal dispersion and excellent reusability[J]. Microporous Mesoporous Mat., 2020,294109858. doi: 10.1016/j.micromeso.2019.109858
Wang S Q, Zhang X Y, Dao X Y, Cheng X M, Sun W Y. Cu2O@Cu@UiO-66-NH2 ternary nanocubes for photocatalytic CO2 reduction[J]. ACS Appl. Nano Mater., 2020,3(10):10437-10445. doi: 10.1021/acsanm.0c02312
Hao X H, Liang Y Q, Zhen H, Sun X C, Liu X L, Li M W, Shen A, Yang Y X. Fast and sensitive fluorescent detection of nitrite based on an amino-functionalized MOFs of UiO-66-NH2[J]. J. Solid State Chem., 2020,287121323. doi: 10.1016/j.jssc.2020.121323
Lv Y H, Cao X F, Jiang H Y, Song W J, Chen C C, Zhao J C. Rapid photocatalytic debromination on TiO2 with in-situ formed copper co-catalyst: Enhanced adsorption and visible light activity[J]. Appl. Catal., B-Environ., 2016,194:150-156. doi: 10.1016/j.apcatb.2016.04.053
Huang H J, Zhang J, Jiang L, Zang Z G. Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B[J]. J. Alloy Compd., 2017,718:112-115. doi: 10.1016/j.jallcom.2017.05.132
Guan Q Q, Wang B, Chai X S, Liu J J, Gu J J, Ning P. Comparison of Pd-UiO-66 and Pd-UiO-66-NH2 catalysts performance for phenol hydrogenation in aqueous medium[J]. Fuel, 2017,205:130-141. doi: 10.1016/j.fuel.2017.05.029
Zhang X R, Zhou H F, Cao W, Chen C, Jiang C Y, Wang Y P. Preparation and mechanism investigation of Bi2WO6/UiO-66-NH2 Z-scheme heterojunction with enhanced visible light catalytic activity[J]. Inorg. Chem. Commun., 2020,120108162. doi: 10.1016/j.inoche.2020.108162
Zhao F, Su C H, Yang W X, Han Y, Luo X L, Li C H, Tang W Z, Yue T L, Li Z H. In-situ growth of UiO-66-NH2 onto polyacrylamide-grafted nonwoven fabric for highly efficient Pb(Ⅱ) removal[J]. Appl. Surf. Sci., 2020,527146862. doi: 10.1016/j.apsusc.2020.146862
Yu L, Li G J, Zhang X S, Ba X, Shi G D, Li Y, Wong P K, Yu J C, Yu Y. Enhanced activity and stability of carbon-decorated cuprous oxide mesoporous nanorods for CO2 reduction in artificial photosynthesis[J]. ACS Catal., 2016,6(10):6444-6454. doi: 10.1021/acscatal.6b01455
Wei Y R, He W D, Sun P X, Yin J M, Deng X L, Xu X J. Synthesis of hollow Cu/Cu2O/Cu2S nanotubes for enhanced electrocatalytic hydrogen evolution[J]. Appl. Surf. Sci., 2019,476:966-971. doi: 10.1016/j.apsusc.2019.01.244
Pan Y, Yuan X Z, Jiang L B, Wang H, Yu H B, Zhang J. Stable self-assembly AgI/UiO-66(NH2) heterojunction as efficient visible-light responsive photocatalyst for tetracycline degradation and mechanism insight[J]. Chem. Eng. J., 2020,384123310. doi: 10.1016/j.cej.2019.123310
Liang Q, Cui S N, Jin J, Liu C H, Xu S, Yao C, Li Z Y. Fabrication of BiOI@UIO-66(NH2)@g-C3N4 ternary Z-scheme heterojunction with enhanced visible-light photocatalytic activity[J]. Appl. Surf. Sci., 2018,456:899-907. doi: 10.1016/j.apsusc.2018.06.173
Pan J J, Wang L J, Shi Y X, Li L L, Xu Z, Sun H R, Guo F, Shi W L. Construction of nanodiamonds/UiO-66-NH2 heterojunction for boosted visible-light photocatalytic degradation of antibiotics[J]. Sep. Purif. Technol., 2022,284120270. doi: 10.1016/j.seppur.2021.120270
Wang M Q, Peng Z, Luo W W, Zhang Q, Li Z D, Zhu Y, Lin H, Cai L T, Yao X Y, Ouyang C Y, Wang D Y. Improving the interfacial stability between lithium and solid-state electrolyte via dipole-structured lithium layer deposited on graphene oxide[J]. Adv. Sci., 2020,7(13)2000237. doi: 10.1002/advs.202000237
Jia D X, Zheng X Y, Ma J M, Lu C X, You L L, Pei Y, Wang Z Y, Liu X M. Work-function-tuned electronic effect of a solute metal in the particles of copper alloys and the thin layer of surface oxides, and its influence on the catalysis on selective aerobic oxidation of benzylic alcohols[J]. Appl. Surf. Sci., 2023,611155549.
Pei Y, Li J, Wang Z Y, Zhong W, Lu C X, Shen Z Q, Qian N L, Liu X M. Boosting the catalytic activity of Cu2O via forming composite with both Cu and metal oxides MO2 (M=Mo and W) by tuning its band structure and Lewis acidity[J]. Appl. Surf. Sci., 2023,639158264.
Hoover J M, Ryland B L, Stahl S S. Mechanism of copper(Ⅰ)/TEMPO-catalyzed aerobic alcohol oxidation[J]. J. Am. Chem. Soc., 2013,135(6):2357-2367.
Liu Z Z, Shen Z Q, Zhang N, Zhong W, Liu X M. Aerobic oxidation of alcohols catalysed by Cu(Ⅰ)/NMI/TEMPO system and its mechanistic insights[J]. Catal. Lett., 2018,148(9):2709-2718.
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
(a) Survey; (b) C1s; (c) Zr3d; (d) N1s; (e) Cu2p; (f) Cu LMM.