Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods
- Corresponding author: Lihua HUANG, 247860084@qq.com
Citation: Lihua HUANG, Jian HUA. Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Liu H H, Gao F Y, Ko S J, Luo N, Tang X L, Duan E H, Yi H H, Zhou Y S. Low-temperature NH3-SCR performance of a novel @Mn composite denitrification catalyst[J]. J. Environ. Sci., 2024,137:271-286. doi: 10.1016/j.jes.2022.12.010
Ye L M, Lu P, Chen D S, Chen D Y, Wu H W, Dai W J, Gan Y L, Xiao J Y, Xie Z W, Li Z W, Huang H B. Activity enhancement of acetate precursor prepared on MnOx-CeO2 catalyst for low-temperature NH3-SCR: Effect of gaseous acetone addition[J]. Chin. Chem. Lett., 2021,32:2509-2512. doi: 10.1016/j.cclet.2020.12.040
Chen C, Xie H D, He P W, Liu X, Yang C, Wang N, Ge C M. Comparison of low-temperature catalytic activity and H2O/SO2 resistance of the Ce-Mn/TiO2 NH3-SCR catalysts prepared by the reverse co-precipitation, co-precipitation and impregnation method[J]. Appl. Surf. Sci., 2022,571151285. doi: 10.1016/j.apsusc.2021.151285
Zhang X L, Zhang X C, Yang X J, Chen Y Z, Hu X R, Wu X P. CeMn/TiO2 catalysts prepared by different methods for enhanced low-temperature NH3-SCR catalytic performance[J]. Chem. Eng. Sci., 2021,238116588. doi: 10.1016/j.ces.2021.116588
Wei L, Cui S P, Guo H X, Ma X Y, Zhang L J. DRIFT and DFT study of cerium addition on SO2 of manganese-based catalysts for low temperature SCR[J]. J. Mol. Catal. A-Chem., 2016,421:102-108. doi: 10.1016/j.molcata.2016.05.013
Sun P, Huang S X, Guo R T, Li M Y, Liu S M, Pan W G, Fu Z G, Liu S W, Sun X, Liu J. The enhanced SCR performance and SO2 resistance of Mn/TiO2 catalyst by the modification with Nb: A mechanistic study[J]. Appl. Surf. Sci., 2018,447:479-488. doi: 10.1016/j.apsusc.2018.03.245
Li W, Zhang C, Li X, Tan P, Zhou A L, Fang Q Y, Chen G. Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NOx with NH3: Evaluation and characterization[J]. Chin. J. Catal., 2018,39:1653-1663. doi: 10.1016/S1872-2067(18)63099-2
Liu L J, Kai Xu K, Su S, He L M, Qing M X, Chi H Y, Liu T, Hu S, Wang Y, Xiang J. Efficient Sm modified Mn/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperature[J]. Appl. Catal. A-Gen., 2020,592117413. doi: 10.1016/j.apcata.2020.117413
Zhu Y J, Xiao X X, Wang J T, Cheng Ma C, Jia X F, Qiao W M, Ling L C. Enhanced activity and water resistance of hierarchical flower-like Mn-Co binary oxides for ammonia-SCR reaction at low temperature[J]. Appl. Surf. Sci., 2021,569150989. doi: 10.1016/j.apsusc.2021.150989
Li S H, Huang B C, Yu C L. A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO[J]. Catal. Commun., 2017,98:47-51. doi: 10.1016/j.catcom.2017.04.046
Wu X M, Yu X L, He X Y, Jing G H. Insight into low-temperature catalytic NO reduction with NH3 on Ce-doped manganese oxide octahedral molecular sieves[J]. J. Phys. Chem. C, 2019,123(17):10981-10990. doi: 10.1021/acs.jpcc.9b01048
Meng D M, Zhan W C, Guo Y, Guo Y L, Wang Y S, Wang L, Lu G Z. A highly effective catalyst of Sm-Mn mixed oxide for the selective catalytic reduction of NOx with ammonia: Effect of the calcination temperature[J]. J. Mol. Catal. A-Chem., 2016,420:272-281. doi: 10.1016/j.molcata.2016.04.028
Qiu L, Meng J J, Pang D D, Zhang C L, Ouyang F. Reaction and characterization of Co and Ce doped Mn/TiO2 catalysts for low-temperature SCR of NO with NH3[J]. Catal. Lett., 2015,145:1500-1509. doi: 10.1007/s10562-015-1556-x
Chuang C, Yan Z D, Zhang C L, Zhang Y S, Jiang M, Ruan L N, Xiao M, Yu Y B, He H. Design of Ca-type todorokite catalysts with highly active for the selective reduction of NOx by NH3 at low temperatures[J]. J. Environ. Sci., 2024,138:697-708. doi: 10.1016/j.jes.2023.04.025
Thirupathi B, Smirniotis P G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations[J]. J. Catal., 2012,288:74-83. doi: 10.1016/j.jcat.2012.01.003
Secu M, Cernea M, Secu E C, Vasile B S. Structural characterization and photoluminescence of nanocrystalline Ho-doped BaTiO3 derived from sol-gel method[J]. J. Nanopart. Res., 2011,13:3123-3128. doi: 10.1007/s11051-011-0224-3
Hang T J, Zhang Y P, Zhuang K, Lu B, Zhu Y W, Shen K. Preparation of honeycombed holmium-modified Fe-Mn/TiO2 catalyst and its performance in the low temperature selective catalytic reduction of NOx[J]. J. Fuel Chem. Technol., 2018,46(3):319-327. doi: 10.1016/S1872-5813(18)30015-X
Zhang Z P, Li R M, Wang M J, Li Y S, Tong Y M, Yang P P, Zhu Y J. Two steps synthesis of CeTiOx oxides nanotube catalyst: Enhanced activity, resistance of SO2 and H2O for low temperature NH3-SCR of NOx[J]. Appl. Catal. B-Environ., 2021,282119542. doi: 10.1016/j.apcatb.2020.119542
Mu W T, Zhu J, Zhang S, Guo Y Y, Su L Q, Li X Y, Li Z. Novel proposition on mechanism aspects over Fe-Mn/ZSM-5 catalyst for NH3-SCR of NOx at low temperature: Rate and direction of multifunctional electron-transfer-bridge and in-situ DRIFTS analysis[J]. Catal. Sci. Technol., 2016,6(20):7532-7548. doi: 10.1039/C6CY01510G
Chen L, Ren S, Liu L, Su B X, Yang J, Chen Z C, Wang M M, Liu Q C. Catalytic performance over Mn-Ce catalysts for NH3-SCR of NO at low temperature: Different zeolite supports[J]. J. Environ. Chem. Eng., 2022,10107167. doi: 10.1016/j.jece.2022.107167
Wang F M, Shen B X, Zhu S W, Wang Z. Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance[J]. Fuel, 2019,249:54-60. doi: 10.1016/j.fuel.2019.02.113
Huang X S, Dong F, Zhang G D, Tang Z C. Design and identify the confinement effect of active site position on catalytic performance for selective catalytic reduction of NO with NH3 at low temperature[J]. J. Catal., 2023,420:134-150. doi: 10.1016/j.jcat.2023.02.020
Jiang L J, Liu Q C, Ran G J, Kong M, Ren S, Yang J, Li J L. V2O5-modifified Mn-Ce/AC catalyst with high SO2 tolerance for low temperature NH3-SCR of NO[J]. Chem. Eng. J., 2019,370:810-821. doi: 10.1016/j.cej.2019.03.225
Wang Y L, Li X X, Zhan L, Li C, Qiao W M, Ling L C. Effect of SO2 on activated carbon honeycomb supported CeO2-MnOx catalyst for NO removal at low temperature[J]. Ind. Eng. Chem. Res., 2015,54(8):2274-2278. doi: 10.1021/ie504074h
France L J, Yang Q, Li W, Chen Z H, Guang J Y, Guo D W, Wang L F, Li X H. Ceria modified FeMnOx-enhanced performance and sulphur resistance for low-temperature SCR of NOx[J]. Appl. Catal. B-Environ., 2017,206:203-215. doi: 10.1016/j.apcatb.2017.01.019
Fang X, Liu Y J, Chen L Z, Cheng Y. Influence of surface active groups on SO2 resistance of birnessite for low temperature NH3-SCR[J]. Chem. Eng. J., 2020,399125798. doi: 10.1016/j.cej.2020.125798
Fan A D, Jing Y, Guo J X, Shi X K, Yuan S D, Li J J. Investigation of Mn doped perovskite La-Mn oxides for NH3-SCR activity and SO2/H2O resistance[J]. Fuel, 2022,310122237. doi: 10.1016/j.fuel.2021.122237
Jiang L J, Liang Y, Liu W Z, Wu H L, Aldahri T, Carrero D S, Liu Q C. Synergistic effect and mechanism of FeOx and CeOx co-doping on the superior catalytic performance and SO2 tolerance of Mn-Fe-Ce/ACN catalyst in low-temperature NH3-SCR of NOx[J]. J. Environ. Chem. Eng., 2021,9(6)106360. doi: 10.1016/j.jece.2021.106360
Fang N J, Guo J X, Shu S, Luo H D, Li J J, Chu Y H. Effect of calcination temperature on low temperature NH3-SCR activity and the resistance of SO2 with or without H2O over Fe-Mn-Zr catalyst[J]. J. Taiwan Inst. Chem. Eng., 2018,93:277-288. doi: 10.1016/j.jtice.2018.07.027
Jia B H, Guo J X, Shu S, Fang N J, Li J J, Chu YH. Effects of different Zr/Ti ratios on NH3-SCR over MnOx/ZryTi1-yO2: Characterization and reaction mechanism[J]. Mol. Catal., 2017,443:25-37. doi: 10.1016/j.mcat.2017.09.019
Fan Y X, Zhang J, Yang L X, Lu M X, Ying T T, Deng B H, Dai W L, Luo X B, Zou J P, Luo S L. Enhancing SO2-shielding effect and Lewis acid sites for high efficiency in low-temperature SCR of NO with NH3: Reinforced electron-deficient extent of Fe3+ enabled by Ti4+ in Fe2O3[J]. Sep. Purif. Technol., 2023,311123272. doi: 10.1016/j.seppur.2023.123272
Shi X K, Guo J X, Shen T, Fan A D, Liu Y J, Yuan S D. Improvement of NH3-SCR activity and resistance to SO2 and H2O by Ce modified La-Mn perovskite catalyst[J]. J. Taiwan Inst. Chem. Eng., 2021,126:102-111. doi: 10.1016/j.jtice.2021.06.056
Guo K, Ji J W, Osuga R, Zhu Y X, Sun J F, Tang C J, Kondo J N, Dong L. Construction of Fe2O3 loaded and mesopore-confined thin-layer titania catalyst for efficient NH3-SCR of NOx with enhanced H2O/SO2 tolerance[J]. Appl. Catal. B-Environ., 2021,287119982. doi: 10.1016/j.apcatb.2021.119982
Yang C X, Zhang K X, Zhang Y K, Peng G J, Yang M, Wen J J, Xie Y, Xia F T, Jia L J, Zhang Q L. An environmental and highly active Ce/Fe-Zr-SO42- catalyst for selective catalytic reduction of NO with NH3: The improving effects of CeO2 and SO42-[J]. J. Environ. Chem. Eng., 2021,9106799. doi: 10.1016/j.jece.2021.106799
Ma Y P, Li W, Wang H M, Chen J J, Wen J J, Xu S Y, Tian X Y, Gao L Y, Hou Z C, Zhang Q L Yang H. Enhanced performance of iron-cerium NOx reduction catalysts by sulphuric acid treatment: The synergistic effect of surface acidity and redox capacity[J]. Appl. Catal. A-Gen., 2021,621118200. doi: 10.1016/j.apcata.2021.118200
Qin B, Guo R T, Wei L G, Yin X F, Yin T Y, Zhou J, Qiu Z Z. A highly effective NbMnCeOx catalyst for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism[J]. J. Environ. Chem. Eng., 2022,10108564. doi: 10.1016/j.jece.2022.108564
Zhang Q L, Fan J, Ning P, Song Z X, Liu X, Wang L Y, Wang J, Wang H M, Long K X. In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst[J]. Appl. Surf. Sci., 2018,435:1037-1045. doi: 10.1016/j.apsusc.2017.11.180
Liu Z M, Zhu J Z, Li J H, Ma L L, Woo S I. Novel Mn-Ce-Ti mixed-oxide catalyst for selective catalytic reduction of NOx with NH3[J]. ACS Appl. Mater. Interfaces, 2014,6:14500-14508. doi: 10.1021/am5038164
Qin Q J, Chen K, Xie S Z, Li L L, Ou X M, Wei X L, Luo X T, Dong L H, Li B. Enhanced SO2 and H2O resistance of MnTiSnOy composite oxide for NH3-SCR through Sm modification[J]. Appl. Surf. Sci., 2022,583152478. doi: 10.1016/j.apsusc.2022.152478
Cao F, Su S, Xiang J, Wang P Y, Hu S, Sun L S, Zhang A C. The activity and mechanism study of Fe-Mn-Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Fuel, 2015,139:232-239. doi: 10.1016/j.fuel.2014.08.060
Liu L J, Su S, Chen D Z, Shu T, Zheng X T, Yu J Y, Feng Y, Wang Y, Hu S, Xiang J. Highly efficient NH3-SCR of NOx over MnFeW/Ti catalyst at low temperature: SO2 tolerance and reaction mechanism[J]. Fuel, 2022,307121805. doi: 10.1016/j.fuel.2021.121805
Wang C Z, Gao F Y, Ko S J, Liu H H, Yi H H, Tang X L. Structural control for inhibiting SO2 adsorption in porous MnCe nanowire aerogel catalysts for low-temperature NH3-SCR[J]. Chem. Eng. J., 2022,434134729. doi: 10.1016/j.cej.2022.134729
Liu J, Guo R T, Li M Y, Sun P, Liu S M, Pan W G, Liu S W, Sun X. Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification: A mechanism study[J]. Fuel, 2018,223:385-393. doi: 10.1016/j.fuel.2018.03.062
Zhao B H, Ran R, Guo X G, Cao L, Xu T F, Chen Z, Wu X D, Si Z C, Weng D. Nb-modified Mn/Ce/Ti catalyst for the selective catalytic reduction of NO with NH3 at low temperature[J]. Appl. Catal. A-Gen., 2017,545:64-71. doi: 10.1016/j.apcata.2017.07.024
Zhou J, Guo R T, Zhang X F, Liu Y Z, Duan C P, Wu G L, Pan W G. Cerium oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review[J]. Energy Fuel, 2021,35:2981-2998. doi: 10.1021/acs.energyfuels.0c04231
Liu H Z, Chen Z, Wang H M, You C F. Active centers response to SO2 and H2O poisoning over Fe-W-Ni exchanged zeolite for high-temperature NH3-SCR: Experimental and DFT studies[J]. Appl. Surf. Sci., 2021,570151105. doi: 10.1016/j.apsusc.2021.151105
Lai J K, Wachs I E. A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts[J]. ACS Catal., 2018,8:6537-6551. doi: 10.1021/acscatal.8b01357
Ma S B, Zhao X Y, Li Y S, Zhang T R, Yuan F L, Niu X Y, Zhu Y J. Effect of W on the acidity and redox performance of the Cu0.02Fe0.2WaTiOx (a=0.01, 0.02, 0.03) catalysts for NH3-SCR of NO[J]. Appl. Catal. B-Environ., 2019,248:226-238. doi: 10.1016/j.apcatb.2019.02.015
Ma S B, Tan H S, Li Y S, Wang P Q, Zhao C, Niu X Y, Zhu Y J. Excellent low-temperature NH3-SCR NO removal performance and enhanced H2O resistance by Ce addition over the Cu0.02Fe0.2CeyTi1-yOx (y=0.1, 0.2, 0.3) catalysts[J]. Chemosphere, 2020,243125309. doi: 10.1016/j.chemosphere.2019.125309
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Simin Wei , Yaqing Yang , Junjie Li , Jialin Wang , Jinlu Tang , Ningning Wang , Zhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
Guo-Ping Yin , Ya-Juan Li , Li Zhang , Ling-Gao Zeng , Xue-Mei Liu , Chang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Yiyue Ding , Qiuxiang Zhang , Lei Zhang , Qilu Yao , Gang Feng , Zhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593
Inset: the corresponding enlarged XRD patterns
Lewis acid; B: Brønsted acid.