Citation: Yujia LI, Tianyu WANG, Fuxue WANG, Chongchen WANG. Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314 shu

Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole

  • Corresponding author: Chongchen WANG, chongchenwang@126.com
  • Received Date: 18 August 2023
    Revised Date: 6 January 2024

Figures(13)

  • A series of MIL-100(Fe)/BiOBr direct Z-scheme heterojunctions was fabricated by the in-situ precipitation method. The crystal structures, micromorphology, optical adsorption property, and chemical states were estimated by powder X-ray diffraction (PXRD), Fourier transforms infrared (FTIR) spectra, UV-Vis diffuse reflectance spectra (UV-Vis DRS), scanning electron microscopy (SEM), high-resolution transmission electron microscope (HRTEM) and X-ray photoelectron spectra (XPS). The performance of photo-Fenton degradation for sulfamethoxazole (SMX) under low-powered light emitting diode lamp irradiation was explored. The catalytic degradation efficiency of SMX (5 mg·L-1) in the optimal reaction system (MB-7/Vis/H2O2, MB-7 was prepared when the mass of MIL-100 (Fe) was 70% of the mass of BiOBr) could reach 99.8% upon 70 min illumination. Meanwhile, the effects of H2O2 concentration, catalyst dosage, pH, and co-existing inorganic anions on SMX removal over MB-7/Vis/H2O2 were studied. The removal efficiency of SMX could reach above 95% after five consecutive operations, suggesting that MB-7 had good stability and reusability. The possible catalytic mechanism was unraveled by photoluminescence (PL) spectra, electrochemical measurements, radical trapping experiments, and electronic spin resonance (ESR) technique. The enhanced photo-Fenton reactivity could be attributed to the fabrication of heterostructures accelerated separation photocarriers and then induced the generation of reactive species and Fe3+/Fe2+ redox cycle.
  • 加载中
    1. [1]

      WU W Y, QI M Y, ZHANG Z K, LAN Q P, HU H M. Research progress on pollution status and detection methods of sulfonamide antibiotics[J]. Environmental Science and Management, 2022,47(12):121-126.  

    2. [2]

      Li W H, Shi Y L, Gao L H, Liu J M, Cai Y Q. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China[J]. Chemosphere, 2012,89(11):1307-1315. doi: 10.1016/j.chemosphere.2012.05.079

    3. [3]

      YANG J N, ZHAO B W, YANG M Y, SUO J M, ZHU Z Y, DENG A Q. Preparation of Fe/C catalyst based on ferric citrate and its activation performance on peroxydisulfate to degrade sulfadiazine[J]. Environmental Engineering, 2023,41(07):116-123.  

    4. [4]

      Wang J L, Zhuan R. Degradation of antibiotics by advanced oxidation processes: An overview[J]. Sci. Total Environ., 2020,701135023. doi: 10.1016/j.scitotenv.2019.135023

    5. [5]

      Yan Q Y, Zhang J L, Xing M Y. Cocatalytic Fenton reaction for pollutant control[J]. Cell Rep. Phys. Sci., 2020,1(8)100149. doi: 10.1016/j.xcrp.2020.100149

    6. [6]

      Wang S Y, An W J, Lu J R, Liu L, Hu J S, Liang Y H, Cui W Q. A Cu/CuFe2O4-OVs two-electron centre-based synergistic photocatalysis-Fenton system for efficient degradation of organic pollutants[J]. Chem. Eng. J., 2022,441135944. doi: 10.1016/j.cej.2022.135944

    7. [7]

      CHEN D D, YI X H, WANG C C. Preparation of metal-organic frameworks and their composites using mechanochemical methods[J]. Chinese J. Inorg. Chem., 2020,36(10):1805-1821.  

    8. [8]

      Du C Y, Zhang Y, Zhang Z, Zhou L, Yu G L, Wen X F, Chi T Y, Wang G L, Su Y H, Deng F F, Lv Y C, Zhu H. Fe-based metal organic frameworks (Fe-MOFs) for organic pollutants removal via photo-Fenton: A review[J]. Chem. Eng. J., 2022,431133932. doi: 10.1016/j.cej.2021.133932

    9. [9]

      Wang T Y, Zhao C, Meng L H, Li Y J, Wang D W, Wang C C. Fe—O—P bond in MIL-88A (Fe)/BOHP heterojunctions as a highway for rapid electron transfer to enhance photo-Fenton abatement of enrofloxacin[J]. Appl. Catal. B-Environ., 2023,334122832. doi: 10.1016/j.apcatb.2023.122832

    10. [10]

      Zhao C, Pan X, Wang Z H, Wang C C. 1 + 1 > 2: A critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis[J]. Chem. Eng. J., 2021,417128022. doi: 10.1016/j.cej.2020.128022

    11. [11]

      Wang Z W, Chen M, Huang D L, Zeng G M, Xu P, Zhou C Y, Lai C, Wang H, Cheng M, Wang W J. Multiply structural optimized strategies for bismuth oxyhalide photocatalysis and their environmental application[J]. Chem. Eng. J., 2019,374:1025-1045. doi: 10.1016/j.cej.2019.06.018

    12. [12]

      Wang J W, Qiu F G, Wang P, Ge C J, Wang C C. Boosted bisphenol A and Cr(Ⅵ) cleanup over Z-scheme WO3/MIL-100 (Fe) composites under visible light[J]. J. Cleaner Prod., 2021,279123408. doi: 10.1016/j.jclepro.2020.123408

    13. [13]

      Wu L, Wang C C, Chu H Y, Yi X H, Wang P, Zhao C, Fu H F. Bisphenol A cleanup over MIL-100(Fe)/CoS composites: Pivotal role of Fe—S bond in regenerating Fe2+ ions for boosted degradation performance[J]. Chemosphere, 2021,280130659. doi: 10.1016/j.chemosphere.2021.130659

    14. [14]

      Xu J, Li L, Guo C S, Zhang Y, Wang S F. Removal of benzotriazole from solution by BiOBr photocatalysis under simulated solar irradiation[J]. Chem. Eng. J., 2013,221:230-237. doi: 10.1016/j.cej.2013.01.081

    15. [15]

      Cui Z K, Song H T, Ge S X, He W W, Liu Y W. Fabrication of BiOCl/BiOBr hybrid nanosheets with enhanced superoxide radical dominating visible light driven photocatalytic activity[J]. Appl. Surf. Sci., 2019,467:505-513.

    16. [16]

      Shi K X, Qiu F G, Wang J W, Wang P, Li H Y, Wang C C. Sulfamethoxazole degradation via peroxydisulfate activation over WO3/MIL-100 (Fe) under low power LED visible light[J]. Sep. Purif. Technol., 2023,309122991. doi: 10.1016/j.seppur.2022.122991

    17. [17]

      Zhuo Z Q, Lu P, Delacourt C, Qiao R M, Xu K, Pan F, Harris S J, Yang W L. Breathing and oscillating growth of solid-electrolyte-interphase upon electrochemical cycling[J]. Chem. Commun., 2018,54(7):814-817. doi: 10.1039/C7CC07082A

    18. [18]

      Jayaram V, Rao K S, Babu R R, Reddy K P J. Experimental investigation of interaction of shock heated test gases with 7.25 μm carbon fibres in a shock tube//Kontis K. 28th International Symposium on Shock Waves: Vol 1. Berlin, Heidelberg: Springer, 2012: 185-190

    19. [19]

      Tian J, Chen Z W, Deng X Y, Sun Q, Sun Z Y, Li W B. Improving visible light driving degradation of norfloxacin over core-shell hierarchical BiOCl microspherical photocatalyst by synergistic effect of oxygen vacancy and nanostructure[J]. Appl. Surf. Sci., 2018,453:373-382. doi: 10.1016/j.apsusc.2018.04.255

    20. [20]

      Qian X F, Ren M, Zhu Y, Yue D T, Han Y, Jia J P, Zhao Y X. Visible light assisted heterogeneous Fenton-like degradation of organic pollutant via α-FeOOH/mesoporous carbon composites[J]. Environ. Sci. Technol., 2017,51(7):3993-4000. doi: 10.1021/acs.est.6b06429

    21. [21]

      Huang S S, Wu Y, Fu J, Xin P J, Zhang Q, Jin Z Q, Zhang J, Hu Z J, Chen Z W. Hierarchical CoFe LDH/MOF nanorods array with strong coupling effect grown on carbon cloth enables efficient oxidation of water and urea[J]. Nanotechnology, 2021,32(38)385405. doi: 10.1088/1361-6528/ac0b65

    22. [22]

      Guo W, Chen Z, Yang C W, Neumann T, Kübel C, Wenzel W, Welle A, Pfleging W, Shekhah O, Wöll C, Redel E. Bi2O3 nanoparticles encapsulated in surface mounted metal-organic framework thin films[J]. Nanoscale, 2016,8(12):6468-6472. doi: 10.1039/C6NR00532B

    23. [23]

      Saeed N A M, Coetsee E, Kroon R E, Bettinelli M, Swart H C. Photoluminescence of Bi3+ doped in YOF phosphor as an activator[J]. Opt. Mater., 2021,119111291. doi: 10.1016/j.optmat.2021.111291

    24. [24]

      Bayazit M K, Xiong L Q, Jiang C R, Moniz S J A, White E, Shaffer M S P, Tang J W. Defect-free single-layer graphene by 10 s microwave solid exfoliation and its application for catalytic water splitting[J]. ACS Appl. Mater. Interfaces, 2021,13(24):28600-28609. doi: 10.1021/acsami.1c03906

    25. [25]

      Attar A R, Piticco L, Leone S R. Core-to-valence spectroscopic detection of the CH2Br radical and element-specific femtosecond photodissociation dynamics of CH2Ibr[J]. J. Chem. Phys., 2014,141(16)164308. doi: 10.1063/1.4898375

    26. [26]

      Liu C H, Dai H L, Tan C Q, Pan Q Y, Hu F P, Peng X M. Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: Mechanism insight, degradation pathways and DFT calculation[J]. Appl. Catal. B-Environ., 2022,310121326. doi: 10.1016/j.apcatb.2022.121326

    27. [27]

      Xu T Y, Zhu R L, Zhu G Q, Zhu J X, Liang X L, Zhu Y P, He H P. Mechanisms for the enhanced photo-Fenton activity of ferrihydrite modified with BiVO4 at neutral pH[J]. Appl. Catal. B-Environ., 2017,212:50-58.

    28. [28]

      LIN A Q, CHENG H F. Recent development in the degradation of fluoroquinolones by Fenton and photo-Fenton processes[J]. Environmental Chemistry, 2021,40(5):1305-1318.  

    29. [29]

      Wang T Y, Zhao C, Meng L H, Li Y J, Chu H Y, Wang F, Tao Y R, Liu W, Wang C C. In-situ-construction of BiOI/UiO-66 heterostructure via nanoplate-on-octahedron: A novel p-n heterojunction photocatalyst for efficient sulfadiazine elimination[J]. Chem. Eng. J., 2023,451138624.

    30. [30]

      Fu H F, Song X X, Wu L, Zhao C, Wang P, Wang C C. Room-temperature preparation of MIL-88A as a heterogeneous photo-Fenton catalyst for degradation of rhodamine B and bisphenol a under visible light[J]. Mater. Res. Bull., 2020,125110806.

    31. [31]

      Wang F X, Wang C C, Du X D, Li Y, Wang F, Wang P. Efficient removal of emerging organic contaminants via photo-Fenton process over micron-sized Fe-MOF sheet[J]. Chem. Eng. J., 2022,429132495.

    32. [32]

      Wang Z H, Lai C, Qin L, Fu Y K, He J F, Huang D L, Li B S, Zhang M M, Liu S Y, Li L, Zhang W, Yi H, Liu X G, Zhou X R. ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn—O—Fe structure for TC degradation[J]. Chem. Eng. J., 2020,392124851.

    33. [33]

      Ahmed Y, Yaakob Z, Akhtar P. Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation[J]. Catal. Sci. Technol., 2016,6(4):1222-1232.

    34. [34]

      Fang J Y, Fu Y, Shang C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J]. Environ. Sci. Technol., 2014,48(3):1859-1868.

    35. [35]

      Chen M J, Yao J, Huang Y, Gong H, Chu W. Enhanced photocatalytic degradation of ciprofloxacin over Bi2O3/(BiO)2CO3 heterojunctions: Efficiency, kinetics, pathways, mechanisms and toxicity evaluation[J]. Chem. Eng. J., 2018,334:453-461.

    36. [36]

      Yi X H, Ji H D, Wang C C, Li Y, Li Y H, Zhao C, Wang A, Fu H F, Wang P, Zhao X, Liu W. Photocatalysis-activated SR-AOP over PDINH/MIL-88A (Fe) composites for boosted chloroquine phosphate degradation: Performance, mechanism, pathway and DFT calculations[J]. Appl. Catal. B-Environ., 2021,293120229.

    37. [37]

      Wen X J, Niu C G, Zhang L, Liang C, Zeng G M. A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: Possible degradation pathways, mineralization activity and an in depth mechanism insight[J]. Appl. Catal. B-Environ., 2018,221:701-714.

    38. [38]

      Cai N, Moon S J, Cevey-Ha L, Moehl T, Humphry-Baker R, Wang P, Zakeeruddin S M, Grätzel M. An organic D-π-A dye for record efficiency solid-state sensitized heterojunction solar cells[J]. Nano Lett., 2011,11(4):1452-1456.

    39. [39]

      Qu X F, Gao Z Q, Zhao X H, Shi L, Du F L, Song H B. Construction of p-n type Bi2O3/Bi4NbO8Cl 0D/2D heterojunction with enhanced photodegradation performance for organic pollutants[J]. Appl. Surf. Sci., 2020,529147248.

    40. [40]

      Jiang Y, Chen H Y, Li J Y, Liao J F, Zhang H H, Wang X D, Kuang D B. Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction[J]. Adv. Funct. Mater., 2020,30(50)2004293.

    41. [41]

      Low J X, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Heterojunction photocatalysts[J]. Adv. Mater., 2017,29(20)1601694.

    42. [42]

      Li Y X, Wang X, Wang C C, Fu H F, Liu Y B, Wang P, Zhao C. S-TiO2/UiO-66-NH2 composite for boosted photocatalytic Cr􀃱 reduction and bisphenol A degradation under LED visible light[J]. J. Hazard. Mater., 2020,399123085.

    43. [43]

      Monteagudo J M, Durán A, Martínez M R, San Martín I. Effect of reduced graphene oxide load into TiO2 P25 on the generation of reactive oxygen species in a solar photocatalytic reactor. Application to antipyrine degradation[J]. Chem. Eng. J., 2020,380122410.

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    5. [5]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    6. [6]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    9. [9]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    12. [12]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    14. [14]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    16. [16]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    17. [17]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(192)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return