Citation: Jie ZHANG, Xin LIU, Zhixin LI, Yuting PEI, Yuqi YANG, Huimin LI, Zhiqiang LIU. Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310 shu

Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection

Figures(9)

  • A unique 3D luminescent metal-organic framework, namely [Cd(L)(H2O)0.5]·DMF·2.5H2O (1), where H2L=3-(tetrazol-5-yl)triazole, has been successfully prepared and characterized. The framework has demonstrated excellent luminescence properties and structural stability in the water system. Notably, the luminescence intensity of 1 was significantly quenched by Cr(Ⅵ) (1 mL of Cr2O72- or 150 μL of CrO42-, 1 mmol·L-1), leading to the formation of an "on-off" luminescence silencing system (Cr2O72-@1), which was capable of accurately detecting Cr(Ⅵ) in the water system. The primary mechanism responsible for luminescence quenching was the Forster resonance energy transfer (FRET) process. Additionally, by removing the involvement of the FRET process, the luminescence intensity of the Cr2O72-@1 system could be restored, allowing for the highly selective and sensitive detection of ascorbic acid (AA) in water systems. Moreover, it has been demonstrated that 1 can successfully detect AA in vitamin C tablets, yielding recovery rates ranging from 98.20% to 103.33% and relative standard deviations (RSDs) ranging from 1.78% to 3.42%. Based on the findings of this experiment, a luminescent "IMPLICATION" molecular logic gate has been constructed utilizing AA and Cr(Ⅵ) as the chemical inputs, respectively.
  • 加载中
    1. [1]

      Yu Z Y, Tang W Y. A pre-oxidized Eu-probe doped into bio-MOF-1 for ascorbic acid emission "off-on" detection in human serum[J]. Talanta, 2024,266125051. doi: 10.1016/j.talanta.2023.125051

    2. [2]

      Fan S S, Zhao M G, Ding L J, Li H, Chen S G. Preparation of Co3O4/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid[J]. Biosens. Bioelectron., 2017,89:846-852. doi: 10.1016/j.bios.2016.09.108

    3. [3]

      Han Q X, Yang H, Wen S T, Jiang H E, Wang L, Liu W S. Selective and rapid detection of ascorbic acid by a cobalt oxyhydroxide-based two-photon fluorescent nano-platform[J]. Inorg. Chem. Front., 2018,5:773-779. doi: 10.1039/C8QI00003D

    4. [4]

      Matsuoka Y, Yamato M, Yamasaki T, Mito F, Yamada K I. Rapid and convenient detection of ascorbic acid using a fluorescent nitroxide switch[J]. Free Radical Biol. Med., 2012,53:2112-2118. doi: 10.1016/j.freeradbiomed.2012.09.032

    5. [5]

      Kim S J, Cho Y K, Lee C, Kim M H, Lee Y. Real-time direct electrochemical sensing of ascorbic acid over rat liver tissues using RuO2 nanowires on electrospun TiO2 nanofibers[J]. Biosens. Bioelectron., 2016,77:1144-1152. doi: 10.1016/j.bios.2015.11.012

    6. [6]

      Levavasseur M, Becquart C, Pape E, Pigeyre M, Rousseaux J, Staumont-Sallé D, Delaporte E. Severe scurvy: An underestimated disease[J]. Eur. J. Clin. Nutr., 2015,69:1076-1077. doi: 10.1038/ejcn.2015.99

    7. [7]

      Wang L C, Pan L Y, Han X, Ha M N, Li K R, Yu H, Zhang Q H, Li Y G, Hou C Y, Wang H Z. A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF)[J]. J. Colloid Interface Sci., 2022,616:326-337. doi: 10.1016/j.jcis.2022.02.058

    8. [8]

      Attallah N, Osman-Malik Y, Frinak S, Besarab A. Effect of intravenous ascorbic acid in hemodialysis patients with EPO hyporesponsive anemia and hyperferritinemia[J]. Am. J. Kidney Dis., 2006,47:644-654. doi: 10.1053/j.ajkd.2005.12.025

    9. [9]

      FENG Y L, JIANG W J, ZHANG F X, KUANG D Z. Solvothermal synthesis, structure and fluorescence properties of four organotin complexes based on m-phthaloyl bis(substituted salicylaldehyde acylhydrazone)[J]. Chinese J. Inorg. Chem., 2022,38(6):1171-1179.  

    10. [10]

      WANG J J, WANG L B, YUE E L, LI J F, BAI C, TANG L, WANG X, HOU X Y, ZHANG Y Q. A highly stable Cd(Ⅱ) coordination polymer for detection of roxithromycin and B4O72-[J]. Chinese J. Inorg. Chem., 2022,38(12):2491-2498.  

    11. [11]

      Hernandez-Aldave S, Kaspar R B, Letterio M P, Tarat A, Yan Y, Bertoncello P. Quaternary phosphonium-based (TPQPCl)-ionomer/graphite nanoplatelets composite chemically modified electrodes: A novel platform for sensing applications[J]. J. Mater. Chem., 2018,6:13293-13304.

    12. [12]

      Liu K, Yu P, Lin Y Q, Wang Y X, Ohsaka T, Mao L Q. Online electrochemical monitoring of dynamic change of hippocampal ascorbate: toward a platform for in vivo evaluation of antioxidant neuroprotective efficiency against cerebral ischemia injury[J]. Anal. Chem., 2013,85:9947-9954. doi: 10.1021/ac402620c

    13. [13]

      Zheng H Q, Liu C Y, Zeng X Y, Chen J, Lü J, Lin R G, Cao R, Lin Z J, Su J W. MOF-808: A metal-organic framework with intrinsic peroxidase-like catalytic activity at neutral pH for colorimetric biosensing[J]. Inorg. Chem., 2018,57:9096-9104. doi: 10.1021/acs.inorgchem.8b01097

    14. [14]

      Ling W, Liew G, Li Y, Hao Y F, Pan H Z, Wang H J, Ning B A, Xu H, Huang X. Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal-organic frameworks[J]. Adv. Mater., 2018,301800917. doi: 10.1002/adma.201800917

    15. [15]

      Zhang J, Gao L L, Wang Y, Zhai L J, Wang X Q, Niu X Y, Hu T P. Gas adsorption, magnetic, and fluorescent sensing properties of four coordination polymers based on 1, 3, 5-tris(4-carbonylphenyloxy) benzene and bis(imidazole) linkers[J]. CrystEngComm, 2018,20:7666-7676. doi: 10.1039/C8CE01421C

    16. [16]

      Guo X Z, Li B W, Xiong G Z, Lin B, Gui L C, Zhang X X, Qiu Z H, Krishna R, Wang X F, Yan X, Chen S S. A stable ultramicroporous Cd(Ⅱ)-MOF with accessible oxygen sites for efficient separation of light hydrocarbons with high methane production[J]. Sep. Purif. Technol., 2024,334125987. doi: 10.1016/j.seppur.2023.125987

    17. [17]

      Zhang J, Gao L L, Wang Y, Zhai L J, Wang X Q, Niu X Y, Hu T P. A bifunctional 3D Tb-based metal-organic framework for sensing and removal of antibiotics in aqueous medium[J]. CrystEngComm, 2019,21:7286-7292. doi: 10.1039/C9CE01303B

    18. [18]

      Zhang J, Gao L L, Wang Y, Zhai L J, Niu X Y, Hu T P. A novel 3D Cd-based luminescent coordination polymer for selective sensing of 4-NP and NZF[J]. New J. Chem., 2019,43:16853-16859. doi: 10.1039/C9NJ04250D

    19. [19]

      Zhang J, Gao L L, Wang Y, Zhai L J, Wang X Q, Niu X Y, Hu T P. Fluorescence sensing and magnetic properties of three coordination polymers based on 6-(3, 5-dicarboxylphenyl)nicotinic acid and pyridine/imidazole linkers[J]. New J. Chem., 2019,43:9376-9383. doi: 10.1039/C9NJ00682F

    20. [20]

      Zhang J, Gao L L, Zhou W D, Zhai L J, Niu X Y, Hu T P. A stable dual-emitting dye@LMOF luminescence probe for the rapid and visible detection of organophosphorous pesticides in aqueous media[J]. CrystEngComm, 2020,22:1050-1056. doi: 10.1039/C9CE01846H

    21. [21]

      Zhang J, Gao L L, Zhang Z K, Zhou W D, Gao T, Zhai L J, Niu X Y, Hu T P. A highly selective luminescent logic gates probe based on Cd-LMOF for pH detection[J]. Microporous Mesoporous Mat., 2020,305110368. doi: 10.1016/j.micromeso.2020.110368

    22. [22]

      Yuan Y Y, Yang S L, Zhang C X, Wang Q L. A new europium metal-organic framework with both high proton conductivity and highly sensitive detection of ascorbic acid[J]. CrystEngComm, 2018,20:6989-6994. doi: 10.1039/C8CE01506F

    23. [23]

      Das A, Ghosh S, Bourda L, Mostakim S K, Banerjee K, Van Hecke K, Biswas S. A Cd(Ⅱ)-organic framework as a highly sensitive and rapid fluorometric sensor for ascorbic acid in aqueous medium[J]. CrystEngComm, 2022,24:4723-4730. doi: 10.1039/D2CE00654E

    24. [24]

      Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Luminescent metal-organic frameworks[J]. Chem. Soc. Rev., 2009,38:1330-1352. doi: 10.1039/b802352m

    25. [25]

      Xiao J N, Liu J J, Liu M Y. Ji G F, Liu Z L[J]. Fabrication of a luminescence-silent system based on a post-synthetic modification Cd-MOFs: A highly selective and sensitive turn-on luminescent probe for ascorbic acid detection. Inorg Chem., 2019,58:6167-6174.

    26. [26]

      Xian J Y, Huang Z Y, Xie X X, Lin C J, Zhang X J, Song H Y. A cationic nanotubular metal-organic framework for the removal of Cr2O72- and iodine[J]. Chin. J. Struct. Chem., 2023,42(4)100005. doi: 10.1016/j.cjsc.2022.100005

    27. [27]

      Ji W J, Wang G J, Wang B Q, Yan B, Liu L L, Xu L, Ma T T, Yao S Q, Fu Y L, Zhang L J, Zhai Q G. A new indium-based MOF as the highly stable luminescent ultra-sensitive antibiotic detector[J]. Chin. J. Struct. Chem., 2023,42(4)100062. doi: 10.1016/j.cjsc.2023.100062

    28. [28]

      Wang C H, Gao J, Cao Y L, Tan H L. Colorimetric logic gate for alkaline phosphatase based on copper (Ⅱ)-based metal-organic frameworks with peroxidase-like activity[J]. Anal. Chim. Acta, 2018,1004:74-81. doi: 10.1016/j.aca.2017.11.078

    29. [29]

      Li W, Qi X, Zhao C Y, Xu X F, Tang A N, Kong D M. A rapid and facile detection for specific small-sized amino acids based on target-triggered destruction of metal organic frameworks[J]. ACS Appl. Mater. Interfaces, 2017,9:236-243. doi: 10.1021/acsami.6b13998

    30. [30]

      Yang N N, Fang J J, Sui Q, Gao E Q. Incorporating electron-deficient bipyridinium chromorphores to make multiresponsive metal-organic frameworks[J]. ACS Appl. Mater. Interfaces, 2018,10:2735-2744. doi: 10.1021/acsami.7b17381

    31. [31]

      Liu J J, Ji G F, Xiao J N, Liu Z. Ultrastable 1D europium complex for simultaneous and quantitative sensing of Cr(Ⅲ) and Cr(Ⅵ) ions in aqueous solution with high selectivity and sensitivity[J]. Inorg. Chem., 2017,56:4197-4205. doi: 10.1021/acs.inorgchem.7b00157

    32. [32]

      Ji G F, Liu J J, Gao X C, Sun W, Wang J Z, Zhao S L, Liu Z L. A luminescent lanthanide MOF for selectively and ultra-high sensitively detecting Pb2+ ions in aqueous solution[J]. J. Mater. Chem. A, 2017,5:10200-10205. doi: 10.1039/C7TA02439H

    33. [33]

      Zhou X H, Li L, Li H H, Li A, Yang T, Huang W. A flexible Eu(Ⅲ)-based metal-organic framework: Turn-off luminescent sensor for the detection of Fe(Ⅲ) and picric acid[J]. Dalton Trans., 2013,42:12403-12409. doi: 10.1039/c3dt51081f

    34. [34]

      Li P J, Hong Y Y, Feng H T, Li S F Y. An efficient "off-on" carbon nanoparticle-based fluorescent sensor for recognition of chromium(Ⅵ) and ascorbic acid based on the inner filter effect[J]. J. Mater. Chem. B, 2017,5:2979-2988. doi: 10.1039/C7TB00017K

    35. [35]

      Du F F, Gong X J, Lu W J, Liu Y, Gao Y F, Shuang S M, Xian M, Dong C. Bright-green-emissive nitrogen-doped carbon dots as a nanoprobe for bifunctional sensing, its logic gate operation and cellular imaging[J]. Talanta, 2018,179:554-562. doi: 10.1016/j.talanta.2017.11.030

    36. [36]

      Xiao J N, Liu J J, Gao X C, Ji G F, Wang D B, Liu Z L. A multi-chemosensor based on Zn-MOF: Ratio-dependent color transition detection of Hg(Ⅱ) and highly sensitive sensor of Cr(Ⅵ)[J]. Sens. Actuator B-Chem., 2018,269:164-172. doi: 10.1016/j.snb.2018.04.129

  • 加载中
    1. [1]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    2. [2]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    3. [3]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    4. [4]

      Yunxia LiuGuandong WuLin LiYiming NiuBingsen ZhangBotao QiaoJunhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608

    5. [5]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    6. [6]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    7. [7]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    8. [8]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    9. [9]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    10. [10]

      Ziqin LiKai HaoLongwei XiangHuayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943

    11. [11]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    12. [12]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    13. [13]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    14. [14]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    15. [15]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    16. [16]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    17. [17]

      Ying WangHong YangCaixia ZhuQing HongXuwen CaoKaiyuan WangYuan XuYanfei ShenSongqin LiuYuanjian Zhang . Cascading oxidoreductases-like nanozymes for high selective and sensitive fluorescent detection of ascorbic acid. Chinese Chemical Letters, 2025, 36(4): 110153-. doi: 10.1016/j.cclet.2024.110153

    18. [18]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(1)
  • Abstract views(332)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return