-
[1]
Yu Z Y, Tang W Y. A pre-oxidized Eu-probe doped into bio-MOF-1 for ascorbic acid emission "off-on" detection in human serum[J]. Talanta,
2024,266125051.
doi: 10.1016/j.talanta.2023.125051
-
[2]
Fan S S, Zhao M G, Ding L J, Li H, Chen S G. Preparation of Co3O4/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid[J]. Biosens. Bioelectron.,
2017,89:846-852.
doi: 10.1016/j.bios.2016.09.108
-
[3]
Han Q X, Yang H, Wen S T, Jiang H E, Wang L, Liu W S. Selective and rapid detection of ascorbic acid by a cobalt oxyhydroxide-based two-photon fluorescent nano-platform[J]. Inorg. Chem. Front.,
2018,5:773-779.
doi: 10.1039/C8QI00003D
-
[4]
Matsuoka Y, Yamato M, Yamasaki T, Mito F, Yamada K I. Rapid and convenient detection of ascorbic acid using a fluorescent nitroxide switch[J]. Free Radical Biol. Med.,
2012,53:2112-2118.
doi: 10.1016/j.freeradbiomed.2012.09.032
-
[5]
Kim S J, Cho Y K, Lee C, Kim M H, Lee Y. Real-time direct electrochemical sensing of ascorbic acid over rat liver tissues using RuO2 nanowires on electrospun TiO2 nanofibers[J]. Biosens. Bioelectron.,
2016,77:1144-1152.
doi: 10.1016/j.bios.2015.11.012
-
[6]
Levavasseur M, Becquart C, Pape E, Pigeyre M, Rousseaux J, Staumont-Sallé D, Delaporte E. Severe scurvy: An underestimated disease[J]. Eur. J. Clin. Nutr.,
2015,69:1076-1077.
doi: 10.1038/ejcn.2015.99
-
[7]
Wang L C, Pan L Y, Han X, Ha M N, Li K R, Yu H, Zhang Q H, Li Y G, Hou C Y, Wang H Z. A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF)[J]. J. Colloid Interface Sci.,
2022,616:326-337.
doi: 10.1016/j.jcis.2022.02.058
-
[8]
Attallah N, Osman-Malik Y, Frinak S, Besarab A. Effect of intravenous ascorbic acid in hemodialysis patients with EPO hyporesponsive anemia and hyperferritinemia[J]. Am. J. Kidney Dis.,
2006,47:644-654.
doi: 10.1053/j.ajkd.2005.12.025
-
[9]
FENG Y L, JIANG W J, ZHANG F X, KUANG D Z. Solvothermal synthesis, structure and fluorescence properties of four organotin complexes based on m-phthaloyl bis(substituted salicylaldehyde acylhydrazone)[J]. Chinese J. Inorg. Chem.,
2022,38(6):1171-1179.
-
[10]
WANG J J, WANG L B, YUE E L, LI J F, BAI C, TANG L, WANG X, HOU X Y, ZHANG Y Q. A highly stable Cd(Ⅱ) coordination polymer for detection of roxithromycin and B4O72-[J]. Chinese J. Inorg. Chem.,
2022,38(12):2491-2498.
-
[11]
Hernandez-Aldave S, Kaspar R B, Letterio M P, Tarat A, Yan Y, Bertoncello P. Quaternary phosphonium-based (TPQPCl)-ionomer/graphite nanoplatelets composite chemically modified electrodes: A novel platform for sensing applications[J]. J. Mater. Chem.,
2018,6:13293-13304.
-
[12]
Liu K, Yu P, Lin Y Q, Wang Y X, Ohsaka T, Mao L Q. Online electrochemical monitoring of dynamic change of hippocampal ascorbate: toward a platform for in vivo evaluation of antioxidant neuroprotective efficiency against cerebral ischemia injury[J]. Anal. Chem.,
2013,85:9947-9954.
doi: 10.1021/ac402620c
-
[13]
Zheng H Q, Liu C Y, Zeng X Y, Chen J, Lü J, Lin R G, Cao R, Lin Z J, Su J W. MOF-808: A metal-organic framework with intrinsic peroxidase-like catalytic activity at neutral pH for colorimetric biosensing[J]. Inorg. Chem.,
2018,57:9096-9104.
doi: 10.1021/acs.inorgchem.8b01097
-
[14]
Ling W, Liew G, Li Y, Hao Y F, Pan H Z, Wang H J, Ning B A, Xu H, Huang X. Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal-organic frameworks[J]. Adv. Mater.,
2018,301800917.
doi: 10.1002/adma.201800917
-
[15]
Zhang J, Gao L L, Wang Y, Zhai L J, Wang X Q, Niu X Y, Hu T P. Gas adsorption, magnetic, and fluorescent sensing properties of four coordination polymers based on 1, 3, 5-tris(4-carbonylphenyloxy) benzene and bis(imidazole) linkers[J]. CrystEngComm,
2018,20:7666-7676.
doi: 10.1039/C8CE01421C
-
[16]
Guo X Z, Li B W, Xiong G Z, Lin B, Gui L C, Zhang X X, Qiu Z H, Krishna R, Wang X F, Yan X, Chen S S. A stable ultramicroporous Cd(Ⅱ)-MOF with accessible oxygen sites for efficient separation of light hydrocarbons with high methane production[J]. Sep. Purif. Technol.,
2024,334125987.
doi: 10.1016/j.seppur.2023.125987
-
[17]
Zhang J, Gao L L, Wang Y, Zhai L J, Wang X Q, Niu X Y, Hu T P. A bifunctional 3D Tb-based metal-organic framework for sensing and removal of antibiotics in aqueous medium[J]. CrystEngComm,
2019,21:7286-7292.
doi: 10.1039/C9CE01303B
-
[18]
Zhang J, Gao L L, Wang Y, Zhai L J, Niu X Y, Hu T P. A novel 3D Cd-based luminescent coordination polymer for selective sensing of 4-NP and NZF[J]. New J. Chem.,
2019,43:16853-16859.
doi: 10.1039/C9NJ04250D
-
[19]
Zhang J, Gao L L, Wang Y, Zhai L J, Wang X Q, Niu X Y, Hu T P. Fluorescence sensing and magnetic properties of three coordination polymers based on 6-(3, 5-dicarboxylphenyl)nicotinic acid and pyridine/imidazole linkers[J]. New J. Chem.,
2019,43:9376-9383.
doi: 10.1039/C9NJ00682F
-
[20]
Zhang J, Gao L L, Zhou W D, Zhai L J, Niu X Y, Hu T P. A stable dual-emitting dye@LMOF luminescence probe for the rapid and visible detection of organophosphorous pesticides in aqueous media[J]. CrystEngComm,
2020,22:1050-1056.
doi: 10.1039/C9CE01846H
-
[21]
Zhang J, Gao L L, Zhang Z K, Zhou W D, Gao T, Zhai L J, Niu X Y, Hu T P. A highly selective luminescent logic gates probe based on Cd-LMOF for pH detection[J]. Microporous Mesoporous Mat.,
2020,305110368.
doi: 10.1016/j.micromeso.2020.110368
-
[22]
Yuan Y Y, Yang S L, Zhang C X, Wang Q L. A new europium metal-organic framework with both high proton conductivity and highly sensitive detection of ascorbic acid[J]. CrystEngComm,
2018,20:6989-6994.
doi: 10.1039/C8CE01506F
-
[23]
Das A, Ghosh S, Bourda L, Mostakim S K, Banerjee K, Van Hecke K, Biswas S. A Cd(Ⅱ)-organic framework as a highly sensitive and rapid fluorometric sensor for ascorbic acid in aqueous medium[J]. CrystEngComm,
2022,24:4723-4730.
doi: 10.1039/D2CE00654E
-
[24]
Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Luminescent metal-organic frameworks[J]. Chem. Soc. Rev.,
2009,38:1330-1352.
doi: 10.1039/b802352m
-
[25]
Xiao J N, Liu J J, Liu M Y. Ji G F, Liu Z L[J]. Fabrication of a luminescence-silent system based on a post-synthetic modification Cd-MOFs: A highly selective and sensitive turn-on luminescent probe for ascorbic acid detection. Inorg Chem.,
2019,58:6167-6174.
-
[26]
Xian J Y, Huang Z Y, Xie X X, Lin C J, Zhang X J, Song H Y. A cationic nanotubular metal-organic framework for the removal of Cr2O72- and iodine[J]. Chin. J. Struct. Chem.,
2023,42(4)100005.
doi: 10.1016/j.cjsc.2022.100005
-
[27]
Ji W J, Wang G J, Wang B Q, Yan B, Liu L L, Xu L, Ma T T, Yao S Q, Fu Y L, Zhang L J, Zhai Q G. A new indium-based MOF as the highly stable luminescent ultra-sensitive antibiotic detector[J]. Chin. J. Struct. Chem.,
2023,42(4)100062.
doi: 10.1016/j.cjsc.2023.100062
-
[28]
Wang C H, Gao J, Cao Y L, Tan H L. Colorimetric logic gate for alkaline phosphatase based on copper (Ⅱ)-based metal-organic frameworks with peroxidase-like activity[J]. Anal. Chim. Acta,
2018,1004:74-81.
doi: 10.1016/j.aca.2017.11.078
-
[29]
Li W, Qi X, Zhao C Y, Xu X F, Tang A N, Kong D M. A rapid and facile detection for specific small-sized amino acids based on target-triggered destruction of metal organic frameworks[J]. ACS Appl. Mater. Interfaces,
2017,9:236-243.
doi: 10.1021/acsami.6b13998
-
[30]
Yang N N, Fang J J, Sui Q, Gao E Q. Incorporating electron-deficient bipyridinium chromorphores to make multiresponsive metal-organic frameworks[J]. ACS Appl. Mater. Interfaces,
2018,10:2735-2744.
doi: 10.1021/acsami.7b17381
-
[31]
Liu J J, Ji G F, Xiao J N, Liu Z. Ultrastable 1D europium complex for simultaneous and quantitative sensing of Cr(Ⅲ) and Cr(Ⅵ) ions in aqueous solution with high selectivity and sensitivity[J]. Inorg. Chem.,
2017,56:4197-4205.
doi: 10.1021/acs.inorgchem.7b00157
-
[32]
Ji G F, Liu J J, Gao X C, Sun W, Wang J Z, Zhao S L, Liu Z L. A luminescent lanthanide MOF for selectively and ultra-high sensitively detecting Pb2+ ions in aqueous solution[J]. J. Mater. Chem. A,
2017,5:10200-10205.
doi: 10.1039/C7TA02439H
-
[33]
Zhou X H, Li L, Li H H, Li A, Yang T, Huang W. A flexible Eu(Ⅲ)-based metal-organic framework: Turn-off luminescent sensor for the detection of Fe(Ⅲ) and picric acid[J]. Dalton Trans.,
2013,42:12403-12409.
doi: 10.1039/c3dt51081f
-
[34]
Li P J, Hong Y Y, Feng H T, Li S F Y. An efficient "off-on" carbon nanoparticle-based fluorescent sensor for recognition of chromium(Ⅵ) and ascorbic acid based on the inner filter effect[J]. J. Mater. Chem. B,
2017,5:2979-2988.
doi: 10.1039/C7TB00017K
-
[35]
Du F F, Gong X J, Lu W J, Liu Y, Gao Y F, Shuang S M, Xian M, Dong C. Bright-green-emissive nitrogen-doped carbon dots as a nanoprobe for bifunctional sensing, its logic gate operation and cellular imaging[J]. Talanta,
2018,179:554-562.
doi: 10.1016/j.talanta.2017.11.030
-
[36]
Xiao J N, Liu J J, Gao X C, Ji G F, Wang D B, Liu Z L. A multi-chemosensor based on Zn-MOF: Ratio-dependent color transition detection of Hg(Ⅱ) and highly sensitive sensor of Cr(Ⅵ)[J]. Sens. Actuator B-Chem.,
2018,269:164-172.
doi: 10.1016/j.snb.2018.04.129