Citation: Jia GUO, Dongling WU, Yuan TAO, Tao WANG, Yanli ZHU, Dianzeng JIA. Preparation of coal tar pitch-based porous carbon with high yield and excellent capacitive performance assisted by magnesium hydroxide-zinc borate composite flame retardant[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 88-98. doi: 10.11862/CJIC.20230308 shu

Preparation of coal tar pitch-based porous carbon with high yield and excellent capacitive performance assisted by magnesium hydroxide-zinc borate composite flame retardant

  • Corresponding author: Dianzeng JIA, jdz@xju.edu.cn
  • Received Date: 15 August 2023
    Revised Date: 30 November 2023

Figures(8)

  • Coal tar pitch-based porous carbon was prepared by carbonizing the carbon source of coal tar pitch and flame retardant of magnesium hydroxide-zinc borate composite salt directly in the air, and its electrochemical performance was explored. Thanks to the synergistic effect of flame retardants on flame retardancy, activation, and doping functionalization, coal tar pitch-based porous carbon with high yield (55.1%), multi-heteroatom doping, and hierarchical structure was obtained. As the electrode material for supercapacitor, the specific capacitance can reach 344 F·g-1 at a current density of 0.5 A·g-1 in a three-electrode system. In addition, the flexible capacitor assembled with the prepared porous carbon and chitosan amino acid proton salt gel electrolyte has an energy density of 29.3 Wh·kg-1, the capacitance remained 96.9% after 50 000 cycles, and it can work normally in the temperature range from -25 to 75 ℃, which had a wide operating temperature range.
  • 加载中
    1. [1]

      Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Energy storage: The future enabled by nanomaterials[J]. Science, 2019,366969.

    2. [2]

      Ding Y, Qiao Z A. Carbon surface chemistry: New insight into the old story[J]. Adv. Mater., 2022,342206025. doi: 10.1002/adma.202206025

    3. [3]

      NIU B F, YAN L J, LYU P, ZHANG X F, WANG M J, KONG J, BAO W P, CHANG L P. Preparation and analysis of carbon aerogel micro-spheres based on coal tar pitch[J]. CIESC J., 2022,73(12):5605-5614.

    4. [4]

      Jiang Y C, He Z F, Cui X, Liu Z Y, Wan J F, Liu Y F, Ma F W. Hier-archical porous carbon derived from coal tar pitch by one step carbonization and activation combined with a CaO template for supercapacitors[J]. New J. Chem., 2022,46(13):6078-6090. doi: 10.1039/D2NJ00433J

    5. [5]

      Qin B, Wang Q, Zhang X H, Xie X L, Jin L E, Cao Q. One-pot synthesis of interconnected porous carbon derived from coal tar pitch and cellulose for high-performance supercapacitors[J]. Electrochim. Acta, 2018,283:655-663. doi: 10.1016/j.electacta.2018.06.201

    6. [6]

      Tomko T, Rajagopalan R, Lanagan M, Foley H C. High energy density capacitor using coal tar pitch derived nanoporous carbon/MnO2 electrodes in aqueous electrolytes[J]. J. Power Sources, 2011,196(4):2380-2386. doi: 10.1016/j.jpowsour.2010.10.004

    7. [7]

      Jiang Y C, He Z F, Du Y Y, Wan J F, Liu Y F, Ma F W. In-situ ZnO template preparation of coal tar pitch-based porous carbon-sheet microsphere for supercapacitor[J]. J. Colloid Interf. Sci., 2021,602:721-731. doi: 10.1016/j.jcis.2021.06.037

    8. [8]

      Yin F, Lu K L, Wei X Y, Fan Z C, Li J H, Kong Q Q, Zong Z M, Bai H C. Fabrication of N/O self-doped hierarchical porous carbons derived from modified coal tar pitch for high-performance supercapacitors[J]. Fuel, 2022,310122418. doi: 10.1016/j.fuel.2021.122418

    9. [9]

      Yang Y K, Wang J S, Zuo P P, Qu S J, Shen W Z. Layer-stacked graphite-like porous carbon for flexible all-solid-state supercapacitor[J]. Chem. Eng. J., 2021,425130609. doi: 10.1016/j.cej.2021.130609

    10. [10]

      Hu J L, Li C L, Li L, Qiu S D, He W X, Xu W J, Mai Y H, Guo F. Phytic acid assisted preparation of high-performance supercapacitor electrodes from noncarbonizable polyvinylpyrrolidone[J]. J. Power Sources, 2020,448227402. doi: 10.1016/j.jpowsour.2019.227402

    11. [11]

      Kang Y M, Wang W, Li J M, Imhanria S, Hao Y X, Lei Z Q. Ultrathin B, N co-doped porous carbon nanosheets derived from intumescent flame retardant for rechargeable Zn-air battery[J]. J. Power Sources, 2021,493229665. doi: 10.1016/j.jpowsour.2021.229665

    12. [12]

      Lian Y M, Ni M, Huang Z H, Chen R J, Zhou L, Utetiwabo W, Yang W. Polyethylene waste carbons with a mesoporous network towards highly efficient supercapacitors[J]. Chem. Eng. J., 2019,366:313-320. doi: 10.1016/j.cej.2019.02.063

    13. [13]

      Ren P X, Wu D L, Wang T, Zeng P, Jia D Z. K2CO3-KCl acts as a molten salt flame retardant to prepare N and O doped honeycomb-like carbon in air for supercapacitors[J]. J. Power Sources, 2022,532231072. doi: 10.1016/j.jpowsour.2022.231072

    14. [14]

      Wang T, Wu D L, Yuan F, Liu Q, Li W Y, Jia D Z. Chitosan derived porous carbon prepared by amino acid proton salt for high-performance quasistate-solid supercapacitor[J]. Chem. Eng. J., 2023,462142292. doi: 10.1016/j.cej.2023.142292

    15. [15]

      Ma Y T, Wang S F, Zhou H Y, Hu W, Polaczyk P, Huang B S. Recycled polyethylene and crumb rubber composites modified asphalt with improved aging resistance and thermal stability[J]. J. Clean. Prod., 2022,334130102. doi: 10.1016/j.jclepro.2021.130102

    16. [16]

      Xu T, Huang X M. Study on combustion mechanism of asphalt binder by using TG-FTIR technique[J]. Fuel, 2010,89(9):2185-2190. doi: 10.1016/j.fuel.2010.01.012

    17. [17]

      Kurosawa R, Takeuchi M, Ryu J. Fourier-transform infrared analysis of the dehydration mechanism of Mg(OH)2 and chemically modified Mg(OH)2[J]. J. Phys. Chem. C, 2021,125(10):5559-5571. doi: 10.1021/acs.jpcc.0c08696

    18. [18]

      Mo F, Wu X L. MgO template-assisted synthesis of hierarchical porous carbon with high content heteroatoms for supercapacitor[J]. J. Energy Storage, 2022,54105287. doi: 10.1016/j.est.2022.105287

    19. [19]

      Chen G X, Hu Z W, Pan Z M, Wang D W. Design of honeycomb-like hierarchically porous carbons with engineered mesoporosity for aqueous zinc-ion hybrid supercapacitors applications[J]. J. Energy Storage, 2021,38102534. doi: 10.1016/j.est.2021.102534

    20. [20]

      Qian X Y, Miao L, Jiang J X, Ping G C, Xiong W, Lv Y K, Liu Y F, Gan L H, Zhua D Z, Liu M X. Hydrangea-like N/O codoped porous carbons for high-energy supercapacitors[J]. Chem. Eng. J., 2020,388124208. doi: 10.1016/j.cej.2020.124208

    21. [21]

      Jia B, Mian Q H, Wu D L, Wang T. Heteroatoms self-doped porous carbon from cottonseed meal using K2CO3 as activator and DES electrolyte for supercapacitor with high energy density[J]. Mater. Today Chem., 2022,24100828. doi: 10.1016/j.mtchem.2022.100828

    22. [22]

      Zhang Q, Liu P G, Wang T, Liu Q, Wu D L. Core-shell structures of Cu2O constructed by carbon quantum dots as high-performance zincion battery cathodes[J]. J. Mater. Chem. A, 2023,11:24823-24835. doi: 10.1039/D3TA05705D

    23. [23]

      Wang X T, Huang F F, Yu M X, Zhang C, Ding F, Chen L, Chen H H. Multilayer adsorption of organic dyes on coal tar-based porous carbon with ultra-high specific surface area[J]. Int. J. Environ. Sci. Technol., 2021,18(12):3871-3882. doi: 10.1007/s13762-020-03093-1

    24. [24]

      Yuan F, Wu D L, Guo J, Liu Q, Wang T. Fermentation assisted preparation of O and N riched porous carbon for high performance flexible supercapacitors[J]. Appl. Surf. Sci., 2023,616156525. doi: 10.1016/j.apsusc.2023.156525

    25. [25]

      Wang T, Wu D L, Tao Y, Ren P X, Chen B L, Jia D Z. Gas phase-heat absorption-condensate phase stepwise flame retardant strategy to prepare coal tar pitch-based porous carbon for supercapacitpor[J]. Small, 20232305982. doi: 10.1002/smll.202305982

    26. [26]

      Hulicova J D, Seredych M, Lu G Q, Bandosz T J. Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors[J]. Adv. Funct. Mater., 2009,19(3):438-447. doi: 10.1002/adfm.200801236

    27. [27]

      WANG T Y, HAN N, JIA D D, LI H Q, HE X J. Preparation and supercapacitive properties of B, N co-doped porous carbons[J]. Chinese J. Inorg. Chem., 2023,39(2):309-316.  

    28. [28]

      Zhang J, Zhao S S, Yang Z, Yang Z W, Yang S L, Liu X R. Hydro-thermal synthesis of blue-green emitting carbon dots based on the liquid products of biodegradation of coal[J]. Int. J. Energy Res., 2021,45(6):9396-9407. doi: 10.1002/er.6468

    29. [29]

      Raymundo P E, Cadek M, Béguin F. Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds[J]. Adv. Funct. Mater., 2009,19(7):1032-1039. doi: 10.1002/adfm.200801057

    30. [30]

      Zhang G L, Yang X G, Shu H H, Zhong W B. Ultrahigh conductivity and antifreezing zwitterionic sulfobetaine hydrogel electrolyte for low-temperature resistance flexible supercapacitors[J]. J. Mater. Chem. A, 2023,11(16):9097-9111. doi: 10.1039/D3TA00835E

    31. [31]

      Ismail A A M, Ghanem L G, Akar A A, Khedr G E, Ramadan M, Shaheen B S, Allam N K. Novel self-regenerative and non-flammable high-performance hydrogel electrolytes with anti-freeze properties and intrinsic redox activity for energy storage applications[J]. J. Mater. Chem. A, 2023,11(30):16009-16018. doi: 10.1039/D3TA02499G

    32. [32]

      Lei X M, Wang C X, Dong B, Li L. Rationally engineering hierarchical porous carbon via oxidation-induced strategy for a high-performance flexible quasi-solid-state supercapacitor[J]. Mater. Today Chem., 2023,30101563. doi: 10.1016/j.mtchem.2023.101563

    33. [33]

      Wan X J, Song H Q, Hu F, Xu B, Wu Z Y, Wang J W. Highly stable flexible supercapacitors enabled by dual-network polyampholyte hydrogel without additional electrolyte additives[J]. Chem. Eng. J., 2023,458141460. doi: 10.1016/j.cej.2023.141460

    34. [34]

      Gao C X, Gao Z C, Wei Y Q, Luo N, Liu Y, Huo P F. Flexible wood enhanced poly (acrylic acid-co-acrylamide)/quaternized gelatin hydrogel electrolytes for high-energy-density supercapacitors[J]. ACS Appl. Mater. Interfaces, 2023,15:2951-2960. doi: 10.1021/acsami.2c18935

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    6. [6]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(5)
  • Abstract views(428)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return