Citation: Jia GUO, Dongling WU, Yuan TAO, Tao WANG, Yanli ZHU, Dianzeng JIA. Preparation of coal tar pitch-based porous carbon with high yield and excellent capacitive performance assisted by magnesium hydroxide-zinc borate composite flame retardant[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 88-98. doi: 10.11862/CJIC.20230308 shu

Preparation of coal tar pitch-based porous carbon with high yield and excellent capacitive performance assisted by magnesium hydroxide-zinc borate composite flame retardant

  • Corresponding author: Dianzeng JIA, jdz@xju.edu.cn
  • Received Date: 15 August 2023
    Revised Date: 30 November 2023

Figures(8)

  • Coal tar pitch-based porous carbon was prepared by carbonizing the carbon source of coal tar pitch and flame retardant of magnesium hydroxide-zinc borate composite salt directly in the air, and its electrochemical performance was explored. Thanks to the synergistic effect of flame retardants on flame retardancy, activation, and doping functionalization, coal tar pitch-based porous carbon with high yield (55.1%), multi-heteroatom doping, and hierarchical structure was obtained. As the electrode material for supercapacitor, the specific capacitance can reach 344 F·g-1 at a current density of 0.5 A·g-1 in a three-electrode system. In addition, the flexible capacitor assembled with the prepared porous carbon and chitosan amino acid proton salt gel electrolyte has an energy density of 29.3 Wh·kg-1, the capacitance remained 96.9% after 50 000 cycles, and it can work normally in the temperature range from -25 to 75 ℃, which had a wide operating temperature range.
  • 加载中
    1. [1]

      Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Energy storage: The future enabled by nanomaterials[J]. Science, 2019,366969.

    2. [2]

      Ding Y, Qiao Z A. Carbon surface chemistry: New insight into the old story[J]. Adv. Mater., 2022,342206025. doi: 10.1002/adma.202206025

    3. [3]

      NIU B F, YAN L J, LYU P, ZHANG X F, WANG M J, KONG J, BAO W P, CHANG L P. Preparation and analysis of carbon aerogel micro-spheres based on coal tar pitch[J]. CIESC J., 2022,73(12):5605-5614.

    4. [4]

      Jiang Y C, He Z F, Cui X, Liu Z Y, Wan J F, Liu Y F, Ma F W. Hier-archical porous carbon derived from coal tar pitch by one step carbonization and activation combined with a CaO template for supercapacitors[J]. New J. Chem., 2022,46(13):6078-6090. doi: 10.1039/D2NJ00433J

    5. [5]

      Qin B, Wang Q, Zhang X H, Xie X L, Jin L E, Cao Q. One-pot synthesis of interconnected porous carbon derived from coal tar pitch and cellulose for high-performance supercapacitors[J]. Electrochim. Acta, 2018,283:655-663. doi: 10.1016/j.electacta.2018.06.201

    6. [6]

      Tomko T, Rajagopalan R, Lanagan M, Foley H C. High energy density capacitor using coal tar pitch derived nanoporous carbon/MnO2 electrodes in aqueous electrolytes[J]. J. Power Sources, 2011,196(4):2380-2386. doi: 10.1016/j.jpowsour.2010.10.004

    7. [7]

      Jiang Y C, He Z F, Du Y Y, Wan J F, Liu Y F, Ma F W. In-situ ZnO template preparation of coal tar pitch-based porous carbon-sheet microsphere for supercapacitor[J]. J. Colloid Interf. Sci., 2021,602:721-731. doi: 10.1016/j.jcis.2021.06.037

    8. [8]

      Yin F, Lu K L, Wei X Y, Fan Z C, Li J H, Kong Q Q, Zong Z M, Bai H C. Fabrication of N/O self-doped hierarchical porous carbons derived from modified coal tar pitch for high-performance supercapacitors[J]. Fuel, 2022,310122418. doi: 10.1016/j.fuel.2021.122418

    9. [9]

      Yang Y K, Wang J S, Zuo P P, Qu S J, Shen W Z. Layer-stacked graphite-like porous carbon for flexible all-solid-state supercapacitor[J]. Chem. Eng. J., 2021,425130609. doi: 10.1016/j.cej.2021.130609

    10. [10]

      Hu J L, Li C L, Li L, Qiu S D, He W X, Xu W J, Mai Y H, Guo F. Phytic acid assisted preparation of high-performance supercapacitor electrodes from noncarbonizable polyvinylpyrrolidone[J]. J. Power Sources, 2020,448227402. doi: 10.1016/j.jpowsour.2019.227402

    11. [11]

      Kang Y M, Wang W, Li J M, Imhanria S, Hao Y X, Lei Z Q. Ultrathin B, N co-doped porous carbon nanosheets derived from intumescent flame retardant for rechargeable Zn-air battery[J]. J. Power Sources, 2021,493229665. doi: 10.1016/j.jpowsour.2021.229665

    12. [12]

      Lian Y M, Ni M, Huang Z H, Chen R J, Zhou L, Utetiwabo W, Yang W. Polyethylene waste carbons with a mesoporous network towards highly efficient supercapacitors[J]. Chem. Eng. J., 2019,366:313-320. doi: 10.1016/j.cej.2019.02.063

    13. [13]

      Ren P X, Wu D L, Wang T, Zeng P, Jia D Z. K2CO3-KCl acts as a molten salt flame retardant to prepare N and O doped honeycomb-like carbon in air for supercapacitors[J]. J. Power Sources, 2022,532231072. doi: 10.1016/j.jpowsour.2022.231072

    14. [14]

      Wang T, Wu D L, Yuan F, Liu Q, Li W Y, Jia D Z. Chitosan derived porous carbon prepared by amino acid proton salt for high-performance quasistate-solid supercapacitor[J]. Chem. Eng. J., 2023,462142292. doi: 10.1016/j.cej.2023.142292

    15. [15]

      Ma Y T, Wang S F, Zhou H Y, Hu W, Polaczyk P, Huang B S. Recycled polyethylene and crumb rubber composites modified asphalt with improved aging resistance and thermal stability[J]. J. Clean. Prod., 2022,334130102. doi: 10.1016/j.jclepro.2021.130102

    16. [16]

      Xu T, Huang X M. Study on combustion mechanism of asphalt binder by using TG-FTIR technique[J]. Fuel, 2010,89(9):2185-2190. doi: 10.1016/j.fuel.2010.01.012

    17. [17]

      Kurosawa R, Takeuchi M, Ryu J. Fourier-transform infrared analysis of the dehydration mechanism of Mg(OH)2 and chemically modified Mg(OH)2[J]. J. Phys. Chem. C, 2021,125(10):5559-5571. doi: 10.1021/acs.jpcc.0c08696

    18. [18]

      Mo F, Wu X L. MgO template-assisted synthesis of hierarchical porous carbon with high content heteroatoms for supercapacitor[J]. J. Energy Storage, 2022,54105287. doi: 10.1016/j.est.2022.105287

    19. [19]

      Chen G X, Hu Z W, Pan Z M, Wang D W. Design of honeycomb-like hierarchically porous carbons with engineered mesoporosity for aqueous zinc-ion hybrid supercapacitors applications[J]. J. Energy Storage, 2021,38102534. doi: 10.1016/j.est.2021.102534

    20. [20]

      Qian X Y, Miao L, Jiang J X, Ping G C, Xiong W, Lv Y K, Liu Y F, Gan L H, Zhua D Z, Liu M X. Hydrangea-like N/O codoped porous carbons for high-energy supercapacitors[J]. Chem. Eng. J., 2020,388124208. doi: 10.1016/j.cej.2020.124208

    21. [21]

      Jia B, Mian Q H, Wu D L, Wang T. Heteroatoms self-doped porous carbon from cottonseed meal using K2CO3 as activator and DES electrolyte for supercapacitor with high energy density[J]. Mater. Today Chem., 2022,24100828. doi: 10.1016/j.mtchem.2022.100828

    22. [22]

      Zhang Q, Liu P G, Wang T, Liu Q, Wu D L. Core-shell structures of Cu2O constructed by carbon quantum dots as high-performance zincion battery cathodes[J]. J. Mater. Chem. A, 2023,11:24823-24835. doi: 10.1039/D3TA05705D

    23. [23]

      Wang X T, Huang F F, Yu M X, Zhang C, Ding F, Chen L, Chen H H. Multilayer adsorption of organic dyes on coal tar-based porous carbon with ultra-high specific surface area[J]. Int. J. Environ. Sci. Technol., 2021,18(12):3871-3882. doi: 10.1007/s13762-020-03093-1

    24. [24]

      Yuan F, Wu D L, Guo J, Liu Q, Wang T. Fermentation assisted preparation of O and N riched porous carbon for high performance flexible supercapacitors[J]. Appl. Surf. Sci., 2023,616156525. doi: 10.1016/j.apsusc.2023.156525

    25. [25]

      Wang T, Wu D L, Tao Y, Ren P X, Chen B L, Jia D Z. Gas phase-heat absorption-condensate phase stepwise flame retardant strategy to prepare coal tar pitch-based porous carbon for supercapacitpor[J]. Small, 20232305982. doi: 10.1002/smll.202305982

    26. [26]

      Hulicova J D, Seredych M, Lu G Q, Bandosz T J. Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors[J]. Adv. Funct. Mater., 2009,19(3):438-447. doi: 10.1002/adfm.200801236

    27. [27]

      WANG T Y, HAN N, JIA D D, LI H Q, HE X J. Preparation and supercapacitive properties of B, N co-doped porous carbons[J]. Chinese J. Inorg. Chem., 2023,39(2):309-316.  

    28. [28]

      Zhang J, Zhao S S, Yang Z, Yang Z W, Yang S L, Liu X R. Hydro-thermal synthesis of blue-green emitting carbon dots based on the liquid products of biodegradation of coal[J]. Int. J. Energy Res., 2021,45(6):9396-9407. doi: 10.1002/er.6468

    29. [29]

      Raymundo P E, Cadek M, Béguin F. Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds[J]. Adv. Funct. Mater., 2009,19(7):1032-1039. doi: 10.1002/adfm.200801057

    30. [30]

      Zhang G L, Yang X G, Shu H H, Zhong W B. Ultrahigh conductivity and antifreezing zwitterionic sulfobetaine hydrogel electrolyte for low-temperature resistance flexible supercapacitors[J]. J. Mater. Chem. A, 2023,11(16):9097-9111. doi: 10.1039/D3TA00835E

    31. [31]

      Ismail A A M, Ghanem L G, Akar A A, Khedr G E, Ramadan M, Shaheen B S, Allam N K. Novel self-regenerative and non-flammable high-performance hydrogel electrolytes with anti-freeze properties and intrinsic redox activity for energy storage applications[J]. J. Mater. Chem. A, 2023,11(30):16009-16018. doi: 10.1039/D3TA02499G

    32. [32]

      Lei X M, Wang C X, Dong B, Li L. Rationally engineering hierarchical porous carbon via oxidation-induced strategy for a high-performance flexible quasi-solid-state supercapacitor[J]. Mater. Today Chem., 2023,30101563. doi: 10.1016/j.mtchem.2023.101563

    33. [33]

      Wan X J, Song H Q, Hu F, Xu B, Wu Z Y, Wang J W. Highly stable flexible supercapacitors enabled by dual-network polyampholyte hydrogel without additional electrolyte additives[J]. Chem. Eng. J., 2023,458141460. doi: 10.1016/j.cej.2023.141460

    34. [34]

      Gao C X, Gao Z C, Wei Y Q, Luo N, Liu Y, Huo P F. Flexible wood enhanced poly (acrylic acid-co-acrylamide)/quaternized gelatin hydrogel electrolytes for high-energy-density supercapacitors[J]. ACS Appl. Mater. Interfaces, 2023,15:2951-2960. doi: 10.1021/acsami.2c18935

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    6. [6]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    9. [9]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    10. [10]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    13. [13]

      Ruilan Fan Xiaoling Huang . 磷源的选择及三种含磷阻燃剂的合成与阻燃性. University Chemistry, 2025, 40(8): 181-191. doi: 10.12461/PKU.DXHX202410025

    14. [14]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    15. [15]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    16. [16]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    17. [17]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    18. [18]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    19. [19]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    20. [20]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

Metrics
  • PDF Downloads(6)
  • Abstract views(1297)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return