Citation: Wenlong MOU, Zhenzhou SUN, Sijie FAN, Chuanbing HOU, Zhongfeng LI, Hongliang HAN, Guo WANG, Yuping YANG, Qionghua JIN. Luminescence properties of Cu(Ⅰ) complexes with single-crystal-to-single-crystal conversion[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(1): 99-110. doi: 10.11862/CJIC.20230303 shu

Luminescence properties of Cu(Ⅰ) complexes with single-crystal-to-single-crystal conversion

  • Corresponding author: Qionghua JIN, jinqh@cnu.edu.cn
  • Received Date: 8 August 2023
    Revised Date: 1 November 2023

Figures(9)

  • 2 -(N, N -bis(diphenylphosphino)methyl)aminopyridine (bdppmapy) was selected as a phosphine ligand, dipyrido[3, 2-a∶2′, 3′-c]phenazine (dppz) as a nitrogen ligand, and [Cu(CH3CN)4]BF4 as a copper salt to react at room temperature. Three new Cu (Ⅰ) complexes were prepared, namely [Cu(dppz) (bdppmapy)]2(BF4)2·H2O (CuBF4-1), [Cu(dppz) (bdppmapy)]BF4 (CuBF4-2), and [Cu(dppz) (bdppmapy)]BF4 (CuBF4-3). Single crystals of CuBF4-1 and CuBF4-3 were obtained. The phenomenon of single-crystal-to-single-crystal conversion was found, and the influence of solvent molecules on the structure and photophysical properties of coordination geometry was explored. The structures of complexes CuBF4-1 and CuBF4-3 were determined by single-crystal X-ray diffraction, and the structures of the three complexes were characterized by powder X-ray diffraction (PXRD), IR, and hydrogen/phosphorus NMR (1H/31P NMR). The photophysical properties of the complexes were characterized and analyzed by UV-Vis absorption spectrum, fluorescence spectrum, fluorescence lifetime, and quantum yield. The differences in the luminescence properties of the complexes were compared, and the influence of solvent molecules on the structure and photophysical properties of coordination geometry was discussed. Terahertz time-domain spectroscopy provided assistance in the study of complexes.
  • 加载中
    1. [1]

      Rader R A, McMillin D R, Buckner M T, Matthews T G, Casadonte D J, Lengel R K, Whittaker S B, Darmon L M, Lytle F E. Photostudies of[Cu(bpy)(PPh3)2]+, [Cu(phen)(PPh3)2]+, and[Cu(dmp)(PPh3)2]+ in solution and in rigid, low-temperature glasses. Simultaneous multiple emissions from intraligand and charge-transfer states[J]. J. Am. Chem. Soc., 1981,103(19):5906-5912. doi: 10.1021/ja00409a048

    2. [2]

      Casadonte D J, McMillin D R. Dual emissions from Cu(dmp)(PR3)2+ systems in a rigid glass: Influence of the phosphine donor strength[J]. Inorg. Chem., 1987,26(23):3950-3952. doi: 10.1021/ic00270a025

    3. [3]

      Cuttell D G, Kuang S M, Fanwick P E, McMillin D R, Walton R A. Simple Cu(Ⅰ) complexes with unprecedented excited-state lifetimes[J]. J. Am. Chem. Soc., 2002,124(1):6-7. doi: 10.1021/ja012247h

    4. [4]

      Yersin H, Czerwieniec R, Shafikov M Z, Suleymanova A F. TADF material design: Photophysical background and case studies focusing on Cu and Ag complexes[J]. ChemPhysChem, 2017,18:3508-3535. doi: 10.1002/cphc.201700872

    5. [5]

      Kuang S M, Cuttell D G, McMillin D R, Fanwick P E, Walton R A. Synthesis and structural characterization of Cu(Ⅰ) and Ni(Ⅱ) complexes that contain the bis[2-(diphenylphosphino)phenyl]ether ligand. Novel emission properties for the Cu(Ⅰ) species[J]. Inorg. Chem., 2002,41(12):3313-3322. doi: 10.1021/ic0201809

    6. [6]

      Zaczek A J, Korter T M. Polymorphism in cis-trans muconic acid crystals and the role of C—H…O hydrogen bonds[J]. Cryst. Growth Des., 2017,17(8):4458-4466. doi: 10.1021/acs.cgd.7b00854

    7. [7]

      Andersen J, Heimdal J, Nelander B, Wugt Larsen R. Competition between weak OH…π and CH…O hydrogen bonds: THz spectroscopy of the C2H2—H2O and C2H4—H2O complexes[J]. J. Chem. Phys., 2017,146(19)194302. doi: 10.1063/1.4983293

    8. [8]

      Kleist E M, Koch Dandolo C L, Guillet J P, Mounaix P, Korter T M. Terahertz spectroscopy and quantum mechanical simulations of crystalline copper-containing historical pigments[J]. J. Phys. Chem. A, 2019,123(6):1225-1232. doi: 10.1021/acs.jpca.8b11676

    9. [9]

      Rexrode N R, Orien J, King M D. Effects of solvent stabilization on pharmaceutical crystallization: Investigating conformational polymorphism of probucol using combined solid-state density functional theory, molecular dynamics, and terahertz spectroscopy[J]. J. Phys. Chem. A, 2019,123(32):6937-6947. doi: 10.1021/acs.jpca.9b00792

    10. [10]

      Zhu N, Wang G, Lin S, Li Z F, Xin X L, Yang Y P, Liu M, Jin Q H. New discovery in crystallography: Correlation of terahertz time- domain spectra with crystal structures and photoluminescence properties of mononuclear/binuclear diimine-Cu(Ⅰ)-phosphine complexes[J]. CrystEngComm, 2019,21(29):4275-4288. doi: 10.1039/C9CE00729F

    11. [11]

      Pan X, Kuang X N, Zhu N, Wang G, Yang Y P, Liu J M, Li Z F, Xin X L, Han H L, Jin Q H, Ren Z G, Zhang J W. Terahertz time-domain absorption spectra of Cu(Ⅰ) complexes bearing tetraphosphine ligands: The bridge between the C—H…π and π-π interactions and photoluminescence properties[J]. Dalton Trans., 2020,49(42):14941-14950. doi: 10.1039/D0DT02542A

    12. [12]

      Sun Z Z, Zhu N, Pan X, Wang G, Li Z F, Xin X L, Han H L, Feng Y B, Jin Q H, Yang Y P, Yang W. A new application of terahertz time-domain absorption spectra in luminescent complexes: Characterization of the C—H…π weak interactions in Cu(Ⅰ) complexes[J]. Dalton Trans., 2021,50(29):10214-10224. doi: 10.1039/D1DT01023A

    13. [13]

      Pan X, Li Z X, Wang G, Yang Y P, Xin X L, Han H L, Liu J M, Jin Q H, Yan D P. Excellent blue emissive neutral Cu(Ⅰ) complexes: Structural analysis, thermochromic luminescent properties, and terahertz spectrum research[J]. Cryst. Growth Des., 2021,21(11):6425-6436. doi: 10.1021/acs.cgd.1c00884

    14. [14]

      Chen X W, Yuan H L, He L H, Chen J L, Liu S J, Wen H R, Zhou G J, Wang J Y, Wong W Y. A sublimable dinuclear cuprous complex showing selective luminescence vapochromism in the crystalline state[J]. Inorg. Chem., 2019,58(21):14478-14489. doi: 10.1021/acs.inorgchem.9b01972

    15. [15]

      Sandroni M, Kayanuma M, Rebarz M, Akdas-Kilig H, Pellegrin Y, Blart E, Bozec H L, Daniel C, Odobel F. Heteroleptic diimine copper(Ⅰ) complexes with large extinction coefficients: Synthesis, quantum chemistry calculations and physico-chemical properties[J]. Dalton Trans., 2013,42(40):14628-14638. doi: 10.1039/c3dt51288f

    16. [16]

      Keller S, Constable E C, Housecroft C E, Neuburger M, Prescimone A, Longo G, Pertegás A, Sessolo M, Bolink H J. [Cu(bpy)(P.P)]+ containing light-emitting electrochemical cells: Improving performance through simple substitution[J]. Dalton Trans., 2014,43(44):16593-16596. doi: 10.1039/C4DT02847C

    17. [17]

      Linfoot C L, Leitl M J, Richardson P, Richardson P, Rausch A F, Chepelin O, White F J, Yersin H, Robertson N. Thermally activated delayed fluorescence (TADF) and enhancing photoluminescence quantum yields of[Cu(diimine)(diphosphine)]+ complexes-photophysical, structural, and computational studies[J]. Inorg. Chem., 2014,53(20):10854-10861. doi: 10.1021/ic500889s

    18. [18]

      Brunner F, Martinez-Sarti L, Keller S, Keller S, Pertegás A, Prescimone A, Constable E C, Bolink H J, Housecroft C E. Peripheral halo-functionalization in [Cu(N.N)(P.P)]+ emitters: Influence on the performances of light-emitting electrochemical cells[J]. Dalton Trans., 2016,45(38):15180-15192. doi: 10.1039/C6DT02665F

    19. [19]

      Zhang F L, Guan Y Q, Chen X L, Wang S S, Liang D, Feng Y F, Chen S F, Li S Z, Zhang F Q, Lu C Z, Gao G X, Zhai B. Syntheses, photoluminescence, and electroluminescence of a series of sublimable bipolar cationic cuprous complexes with thermally activated delayed fluorescence[J]. Inorg. Chem., 2017,56(7):3742-3753. doi: 10.1021/acs.inorgchem.6b01847

    20. [20]

      Fresta E, Volpi G, Milanesio M, Garino C, Barolo Claudia, Costa R D. Novel ligand and device designs for stable light-emitting electrochemical cells based on heteroleptic copper(Ⅰ) complexes[J]. Inorg. Chem., 2018,57(16):10469-10479. doi: 10.1021/acs.inorgchem.8b01914

    21. [21]

      Minozzi C, Caron A, Grenier-Petel J C, Santandrea J, Collins S K. Heteroleptic copper(Ⅰ)-based complexes for photocatalysis: Combinatorial assembly, discovery, and optimization[J]. Angew. Chem. Int. Ed., 2018,57(19):5477-5481. doi: 10.1002/anie.201800144

    22. [22]

      Fresta E, Weber M D, Fernandez-Cestau J, Costa R D. White light-emitting electrochemical cells based on deep-red Cu(Ⅰ) complexes[J]. Adv. Opt. Mater., 2019,7(23)1900830. doi: 10.1002/adom.201900830

    23. [23]

      Bruker. SMART and SAINT, Madison Wisconsin, Simens Analytical X-ray Instrument Inc., 1996.

    24. [24]

      Sheldrick G M. SHELXTL NT Ver. 5.1. University of Göttingen, Germany, 1997.

    25. [25]

      Sheldrick G M. SHELXTL-97 and SHELXL-97. University of Göttingen, Germany, 1997.

    26. [26]

      Sun Z Z, Zhu N, Pan X, Hu F Z, Wang G, Yang Y P, Qiu Q M, Li Z F, Xin X L, Liu J M, Li X Q, Jin Q H, Ren Z G, Zhou Q L. Designing luminescent diimine-Cu(Ⅰ)-phosphine complexes by tuning N-ligand and counteranions: Correlation of weak interactions, luminescence and THz absorption spectra[J]. CrystEngComm, 2022,24:1258-1266. doi: 10.1039/D1CE01574E

    27. [27]

      Li Z X, Sun Z Z, Wang G, Yang W, Han H L, Yang Y P, Li Z F, Dai L X, Yao Y S, Jin Q H. Study on the luminescence properties of ionic[Cu(N.N)(P.P)]+ complexes: Influence of ligands, counteranions and weak interactions[J]. CrystEngComm, 2022,24:7739-7750. doi: 10.1039/D2CE01177H

    28. [28]

      Küchle W, Dolg M, Stoll H, Preuss H. J. Chem. Phys. , 1994, 100(10): 7535-7542  doi: 10.1063/1.466847

    29. [29]

      Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J]. J. Chem. Phys., 1993,122(98):5648-5652.

    30. [30]

      Dreuw A, Head-Gordon M. Single-reference ab initio methods for the calculation of excited states of large molecules[J]. Chem. Rev., 2005,105:4009-4037. doi: 10.1021/cr0505627

    31. [31]

      Hanwell M D, Curtis D E, Lonie D C, Vandermeersch T, Zurek E, Hutchison G R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform[J]. J. Cheminformatics, 2012,417. doi: 10.1186/1758-2946-4-17

    32. [32]

      Frisch M J, Trucks G W, Schlegel H B, Scuceria G E. Gaussian 03. Wallingford, CT, Gaussian, Inc., 2003.

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    8. [8]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    9. [9]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    10. [10]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    18. [18]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    19. [19]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    20. [20]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

Metrics
  • PDF Downloads(7)
  • Abstract views(466)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return