Citation: Jiaxin LI, Wenshi ZHONG, Zhaomei LIU, Gengshen HU. Preparation of low-cost S-doped porous carbons for high-performance supercapacitors[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 325-335. doi: 10.11862/CJIC.20230290 shu

Preparation of low-cost S-doped porous carbons for high-performance supercapacitors

  • Corresponding author: Gengshen HU, gshu@zjnu.edu.cn
  • Received Date: 2 August 2023
    Revised Date: 23 November 2023

Figures(8)

  • Inexpensive sulfur-doped porous carbons (SSC-T, T ℃ represented carbonization temperature) were prepared through the hard template method by using inexpensive colloidal silica as a template, sucrose as a carbon source, and sulfuric acid as a precarbonization reagent and sulfur source. The effects of sulfuric acid and carbonization temperature on the microstructure, pore structure, and specific surface area of porous carbons were investigated. It was found that the carbonization temperature had a significant impact on the pore structure, surface area, and sulfur content of carbons. The sample SSC - 900 obtained by carbonization at 900 ℃ has the largest surface area, pore volume, and specific capacitance, which was much higher than the SC-900 prepared without the addition of sulfuric acid, indicating that the addition of sulfuric acid can increase the surface area, pore volume, and the specific capacitance. SSC-900 had the advantages of lower cost, larger pore size, and better capacitive performance than the expensive mesoporous carbon CMK-3. In the three-electrode system with 6.0 mol·L-1 KOH as electrolyte, the specific capacitance of SSC-900 can reach 357 F·g-1 at a current density of 0.5 A·g-1, while the specific capacitance of SC-900 and CMK-3 was only 152 and 266 F·g-1, respectively. The capacitance contribution analysis showed that the doublelayer capacitance (EDLC) and pseudocapacitance of SSC - 900 were higher than those of SC - 900. In addition, SSC-900 can maintain an initial specific capacitance of 98.4% after 10 000 cycles at a current density of 0.5 A·g-1.
  • 加载中
    1. [1]

      Li L R, Huang Z W, Li H, Lu H H. A High-efficiency voltage equalization scheme for supercapacitor energy storage system in renewable generation applications[J]. Sustainability, 2016,8(6)548. doi: 10.3390/su8060548

    2. [2]

      Shinde P A, Abbas Q, Chodankar N R, Ariga K, Abdelkareem M A, Olabi A G. Strengths, weaknesses, opportunities, and threats (SWOT) analysis of supercapacitors: A review[J]. J. Energy Chem., 2023,79:611-638. doi: 10.1016/j.jechem.2022.12.030

    3. [3]

      Fleischmann S, Mitchell J B, Wang R C, Zhan C, Jiang D E, Presser V, Augustyn V. Pseudocapacitance: From fundamental understanding to high power energy storage materials[J]. Chem. Rev., 2020,120(14):6738-6782. doi: 10.1021/acs.chemrev.0c00170

    4. [4]

      Wang Y F, Zhang L, Hou H Q, Xu W H, Duan G G, He S J, Liu K M, Jiang S H. Recent progress in carbon-based materials for supercapacitor electrodes: A review[J]. J. Mater. Sci., 2021,56(1):173-200. doi: 10.1007/s10853-020-05157-6

    5. [5]

      Lv S, Ma L Y, Shen X Y, Tong H. One-step copper-catalyzed synthesis of porous carbon nanotubes for high-performance supercapacitors[J]. Microporous Mesoporous Mat., 2021,310110670. doi: 10.1016/j.micromeso.2020.110670

    6. [6]

      Roggenbuck J, Tiemann M. Ordered Mesoporous magnesium oxide with high thermal stability synthesized by exotemplating using CMK-3 carbon[J]. J. Am. Chem. Soc., 2005,127(4):1096-1097. doi: 10.1021/ja043605u

    7. [7]

      Rodríguez-Estupiñan P, Correa-Navarro Y M, Vargas D P, Giraldo L, Moreno-Piraján J C. Enthalpies of immersion in caffeine and glyphosate aqueous solutions of SBA-15 and amino-functionalized SBA-15[J]. ACS Omega, 2021,6(33):21339-21349. doi: 10.1021/acsomega.1c01588

    8. [8]

      Liu F Y, Wang Z X, Zhang H T, Jin L, Chu X, Gu B N, Huang H C, Yang W Q. Nitrogen, oxygen, and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin[J]. Carbon, 2019,149:105-116. doi: 10.1016/j.carbon.2019.04.023

    9. [9]

      Xiao J F, Wang Y, Zhang T C, Yuan S J. N, S-containing polycondensate-derived porous carbon materials for superior CO2 adsorption and supercapacitor[J]. Appl. Surf. Sci., 2021,562150128. doi: 10.1016/j.apsusc.2021.150128

    10. [10]

      Yan L J, Li D, Yan T T, Chen G R, Shi L Y, An Z X, Zhang D S. N, P, S-codoped hierarchically porous carbon spheres with well-balanced gravimetric/volumetric capacitance for supercapacitors[J]. ACS Sustain. Chem. Eng., 2018,6(4):5265-5272. doi: 10.1021/acssuschemeng.7b04922

    11. [11]

      XIN R R, MIAO H J, JIANG W, HU G S. N-doped porous carbons with high surface areas prepared through one-step chemical activation and their application for supercapacitors[J]. Chinese J. Inorg. Chem., 2019,35(10):1781-1790.  

    12. [12]

      Shi J, Tian X D, Li X, Liu Y Q, Sun H Z. Micro/mesopore carbon spheres derived from sucrose for use in high performance supercapacitors[J]. New Carbon Mater., 2021,36(6):1149-1157. doi: 10.1016/S1872-5805(21)60044-6

    13. [13]

      GAO S M, ZHENG S J, JIANG W, HU G S. Porous carbon material: Post-treatment through chemical vapor method and supercapacitor performance[J]. Chinese J. Inorg. Chem., 2022,38(3):479-488.  

    14. [14]

      Hong X Y, Li J H, Zhu G S, Xu H R, Zhang X Y, Zhao Y Y, Yan D L, Chen K X, Liao F J, Yu A B. Supercapacitive performance of nitrogen doped porous carbon based material for supercapacitor application[J]. J. Chem. Sci., 2020,132(1)143. doi: 10.1007/s12039-020-01849-3

    15. [15]

      Demir M, Farghaly A A, Decuir M J, Collinson M M, Gupta R B. Supercapacitance and oxygen reduction characteristics of sulfur self-doped micro/mesoporous bio-carbon derived from lignin[J]. Mater. Chem. Phys., 2018,216:508-516. doi: 10.1016/j.matchemphys.2018.06.008

    16. [16]

      Sun X Z, Liu X J, Li F. Sulfur-doped laser-induced graphene derived from polyethersulfone and lignin hybrid for all-solid-state supercapacitor[J]. Appl. Surf. Sci., 2021,551149438. doi: 10.1016/j.apsusc.2021.149438

    17. [17]

      Yaglikci S, Gokce Y, Yagmur E, Aktas Z. The performance of sulphur doped activated carbon supercapacitors prepared from waste tea[J]. Environ. Technol., 2020,41(1):36-48. doi: 10.1080/09593330.2019.1575480

    18. [18]

      Guo D D, Qian J, Xin R R, Zhang Z, Jiang W, Hu G S, Fan M H. Facile synthesis of nitrogen-enriched nanoporous carbon materials for high performance supercapacitors[J]. J. Colloid Interface Sci., 2019,538:199-208. doi: 10.1016/j.jcis.2018.11.107

    19. [19]

      Pallavolu M R, Prabhu S, Nallapureddy R R, Kumar A S, Banerjee A N, Joo S W. Bio-derived graphitic carbon quantum dot encapsulated S- and N-doped graphene sheets with unusual battery-type behavior for high-performance supercapacitor[J]. Carbon, 2023,202:93-102. doi: 10.1016/j.carbon.2022.10.077

    20. [20]

      Maity S, Banerjee D, Bhattacharya G, Roy S S, Dhar B B. Hydrothermally synthesized sulfur-doped graphite as supercapacitor electrode materials[J]. ACS Appl. Nano Mater., 2022,5(3):3548-3557. doi: 10.1021/acsanm.1c04169

    21. [21]

      Zhang R, Jing X X, Chu Y T, Wang L, Kang W J, Wei D H, Li H B, Xiong S L. Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors[J]. J. Mater. Chem. A, 2018,6(36):17730-17739. doi: 10.1039/C8TA06471G

    22. [22]

      Yi J N, Qing Y, Wu C T, Zeng Y X, Wu Y Q, Lu X H, Tong Y X. Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors[J]. J. Power Sources, 2017,351:130-137. doi: 10.1016/j.jpowsour.2017.03.036

    23. [23]

      Ran F T, Yang X B, Xu X Q, Li S W, Liu Y Y, Shao L. Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor[J]. Chem. Eng. J., 2021,412128673.

    24. [24]

      Zheng L P, Tang B, Dai X C, Xing T, Ouyang Y H, Wang Y, Chang B B, Shu H B, Wang X Y. High-yield synthesis of N-rich polymer-derived porous carbon with nanorod-like structure and ultrahigh N-doped content for high-performance supercapacitors[J]. Chem. Eng. J., 2020,399125671.

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    5. [5]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    6. [6]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    7. [7]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    8. [8]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    9. [9]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    14. [14]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    15. [15]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    16. [16]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    17. [17]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    18. [18]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    19. [19]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    20. [20]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

Metrics
  • PDF Downloads(8)
  • Abstract views(1582)
  • HTML views(167)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return