Citation: Jiaxin LI, Wenshi ZHONG, Zhaomei LIU, Gengshen HU. Preparation of low-cost S-doped porous carbons for high-performance supercapacitors[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 325-335. doi: 10.11862/CJIC.20230290 shu

Preparation of low-cost S-doped porous carbons for high-performance supercapacitors

  • Corresponding author: Gengshen HU, gshu@zjnu.edu.cn
  • Received Date: 2 August 2023
    Revised Date: 23 November 2023

Figures(8)

  • Inexpensive sulfur-doped porous carbons (SSC-T, T ℃ represented carbonization temperature) were prepared through the hard template method by using inexpensive colloidal silica as a template, sucrose as a carbon source, and sulfuric acid as a precarbonization reagent and sulfur source. The effects of sulfuric acid and carbonization temperature on the microstructure, pore structure, and specific surface area of porous carbons were investigated. It was found that the carbonization temperature had a significant impact on the pore structure, surface area, and sulfur content of carbons. The sample SSC - 900 obtained by carbonization at 900 ℃ has the largest surface area, pore volume, and specific capacitance, which was much higher than the SC-900 prepared without the addition of sulfuric acid, indicating that the addition of sulfuric acid can increase the surface area, pore volume, and the specific capacitance. SSC-900 had the advantages of lower cost, larger pore size, and better capacitive performance than the expensive mesoporous carbon CMK-3. In the three-electrode system with 6.0 mol·L-1 KOH as electrolyte, the specific capacitance of SSC-900 can reach 357 F·g-1 at a current density of 0.5 A·g-1, while the specific capacitance of SC-900 and CMK-3 was only 152 and 266 F·g-1, respectively. The capacitance contribution analysis showed that the doublelayer capacitance (EDLC) and pseudocapacitance of SSC - 900 were higher than those of SC - 900. In addition, SSC-900 can maintain an initial specific capacitance of 98.4% after 10 000 cycles at a current density of 0.5 A·g-1.
  • 加载中
    1. [1]

      Li L R, Huang Z W, Li H, Lu H H. A High-efficiency voltage equalization scheme for supercapacitor energy storage system in renewable generation applications[J]. Sustainability, 2016,8(6)548. doi: 10.3390/su8060548

    2. [2]

      Shinde P A, Abbas Q, Chodankar N R, Ariga K, Abdelkareem M A, Olabi A G. Strengths, weaknesses, opportunities, and threats (SWOT) analysis of supercapacitors: A review[J]. J. Energy Chem., 2023,79:611-638. doi: 10.1016/j.jechem.2022.12.030

    3. [3]

      Fleischmann S, Mitchell J B, Wang R C, Zhan C, Jiang D E, Presser V, Augustyn V. Pseudocapacitance: From fundamental understanding to high power energy storage materials[J]. Chem. Rev., 2020,120(14):6738-6782. doi: 10.1021/acs.chemrev.0c00170

    4. [4]

      Wang Y F, Zhang L, Hou H Q, Xu W H, Duan G G, He S J, Liu K M, Jiang S H. Recent progress in carbon-based materials for supercapacitor electrodes: A review[J]. J. Mater. Sci., 2021,56(1):173-200. doi: 10.1007/s10853-020-05157-6

    5. [5]

      Lv S, Ma L Y, Shen X Y, Tong H. One-step copper-catalyzed synthesis of porous carbon nanotubes for high-performance supercapacitors[J]. Microporous Mesoporous Mat., 2021,310110670. doi: 10.1016/j.micromeso.2020.110670

    6. [6]

      Roggenbuck J, Tiemann M. Ordered Mesoporous magnesium oxide with high thermal stability synthesized by exotemplating using CMK-3 carbon[J]. J. Am. Chem. Soc., 2005,127(4):1096-1097. doi: 10.1021/ja043605u

    7. [7]

      Rodríguez-Estupiñan P, Correa-Navarro Y M, Vargas D P, Giraldo L, Moreno-Piraján J C. Enthalpies of immersion in caffeine and glyphosate aqueous solutions of SBA-15 and amino-functionalized SBA-15[J]. ACS Omega, 2021,6(33):21339-21349. doi: 10.1021/acsomega.1c01588

    8. [8]

      Liu F Y, Wang Z X, Zhang H T, Jin L, Chu X, Gu B N, Huang H C, Yang W Q. Nitrogen, oxygen, and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin[J]. Carbon, 2019,149:105-116. doi: 10.1016/j.carbon.2019.04.023

    9. [9]

      Xiao J F, Wang Y, Zhang T C, Yuan S J. N, S-containing polycondensate-derived porous carbon materials for superior CO2 adsorption and supercapacitor[J]. Appl. Surf. Sci., 2021,562150128. doi: 10.1016/j.apsusc.2021.150128

    10. [10]

      Yan L J, Li D, Yan T T, Chen G R, Shi L Y, An Z X, Zhang D S. N, P, S-codoped hierarchically porous carbon spheres with well-balanced gravimetric/volumetric capacitance for supercapacitors[J]. ACS Sustain. Chem. Eng., 2018,6(4):5265-5272. doi: 10.1021/acssuschemeng.7b04922

    11. [11]

      XIN R R, MIAO H J, JIANG W, HU G S. N-doped porous carbons with high surface areas prepared through one-step chemical activation and their application for supercapacitors[J]. Chinese J. Inorg. Chem., 2019,35(10):1781-1790.  

    12. [12]

      Shi J, Tian X D, Li X, Liu Y Q, Sun H Z. Micro/mesopore carbon spheres derived from sucrose for use in high performance supercapacitors[J]. New Carbon Mater., 2021,36(6):1149-1157. doi: 10.1016/S1872-5805(21)60044-6

    13. [13]

      GAO S M, ZHENG S J, JIANG W, HU G S. Porous carbon material: Post-treatment through chemical vapor method and supercapacitor performance[J]. Chinese J. Inorg. Chem., 2022,38(3):479-488.  

    14. [14]

      Hong X Y, Li J H, Zhu G S, Xu H R, Zhang X Y, Zhao Y Y, Yan D L, Chen K X, Liao F J, Yu A B. Supercapacitive performance of nitrogen doped porous carbon based material for supercapacitor application[J]. J. Chem. Sci., 2020,132(1)143. doi: 10.1007/s12039-020-01849-3

    15. [15]

      Demir M, Farghaly A A, Decuir M J, Collinson M M, Gupta R B. Supercapacitance and oxygen reduction characteristics of sulfur self-doped micro/mesoporous bio-carbon derived from lignin[J]. Mater. Chem. Phys., 2018,216:508-516. doi: 10.1016/j.matchemphys.2018.06.008

    16. [16]

      Sun X Z, Liu X J, Li F. Sulfur-doped laser-induced graphene derived from polyethersulfone and lignin hybrid for all-solid-state supercapacitor[J]. Appl. Surf. Sci., 2021,551149438. doi: 10.1016/j.apsusc.2021.149438

    17. [17]

      Yaglikci S, Gokce Y, Yagmur E, Aktas Z. The performance of sulphur doped activated carbon supercapacitors prepared from waste tea[J]. Environ. Technol., 2020,41(1):36-48. doi: 10.1080/09593330.2019.1575480

    18. [18]

      Guo D D, Qian J, Xin R R, Zhang Z, Jiang W, Hu G S, Fan M H. Facile synthesis of nitrogen-enriched nanoporous carbon materials for high performance supercapacitors[J]. J. Colloid Interface Sci., 2019,538:199-208. doi: 10.1016/j.jcis.2018.11.107

    19. [19]

      Pallavolu M R, Prabhu S, Nallapureddy R R, Kumar A S, Banerjee A N, Joo S W. Bio-derived graphitic carbon quantum dot encapsulated S- and N-doped graphene sheets with unusual battery-type behavior for high-performance supercapacitor[J]. Carbon, 2023,202:93-102. doi: 10.1016/j.carbon.2022.10.077

    20. [20]

      Maity S, Banerjee D, Bhattacharya G, Roy S S, Dhar B B. Hydrothermally synthesized sulfur-doped graphite as supercapacitor electrode materials[J]. ACS Appl. Nano Mater., 2022,5(3):3548-3557. doi: 10.1021/acsanm.1c04169

    21. [21]

      Zhang R, Jing X X, Chu Y T, Wang L, Kang W J, Wei D H, Li H B, Xiong S L. Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors[J]. J. Mater. Chem. A, 2018,6(36):17730-17739. doi: 10.1039/C8TA06471G

    22. [22]

      Yi J N, Qing Y, Wu C T, Zeng Y X, Wu Y Q, Lu X H, Tong Y X. Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors[J]. J. Power Sources, 2017,351:130-137. doi: 10.1016/j.jpowsour.2017.03.036

    23. [23]

      Ran F T, Yang X B, Xu X Q, Li S W, Liu Y Y, Shao L. Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor[J]. Chem. Eng. J., 2021,412128673.

    24. [24]

      Zheng L P, Tang B, Dai X C, Xing T, Ouyang Y H, Wang Y, Chang B B, Shu H B, Wang X Y. High-yield synthesis of N-rich polymer-derived porous carbon with nanorod-like structure and ultrahigh N-doped content for high-performance supercapacitors[J]. Chem. Eng. J., 2020,399125671.

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    6. [6]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    7. [7]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(2)
  • Abstract views(358)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return