First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I)
- Corresponding author: Jianwei WEI, redskywei@cqut.edu.cn
Citation:
Cheng PENG, Jianwei WEI, Yating CHEN, Nan HU, Hui ZENG. First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I)[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(3): 555-560.
doi:
10.11862/CJIC.20230282
Ma C Q, Shen D, Ng T W, Lo M F, Lee C S. 2D perovskites with short interlayer distance for high-performance solar cell application[J]. Adv. Mater., 2018,30(22):2-7.
Liu M Y, Niu J, Zhang Z P, Dou M L, Wang F. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high-performance supercapacitors[J]. Nano Energy, 2018,51(6):366-372.
Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chem. Sci., 2015,6(1):613-617. doi: 10.1039/C4SC03141E
Liao P Z, Zhao X J, Li G L, Shen Y, Wang M K. A new method for fitting current-voltage curves of planar heterojunction perovskite solar cells[J]. Nano-Micro Lett., 2018,10(1):1-8. doi: 10.1007/s40820-017-0154-4
Li Y F, Yang C Y, Guo W S, Duan T W, Zhou Z M, Zhou Y Y. All-inorganic perovskite solar cells featuring mixed group ⅣA cations[J]. Nanoscale, 2023,15:7249-7260. doi: 10.1039/D3NR00133D
Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells[J]. Nature, 2021,592(7854):381-385. doi: 10.1038/s41586-021-03406-5
Yang Y, Yang M J, Li Z, Crisp R, Zhu K, Beard M C. Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: Influence of exciton binding energy[J]. J. Phys. Chem. Lett., 2015,6(23):4688-4692. doi: 10.1021/acs.jpclett.5b02290
Chouhan A S, Jasti N P, Avasthi S. Effect of interface defect density on performance of perovskite solar cell: Correlation of simulation and experiment[J]. Mater. Lett., 2018,221:150-153. doi: 10.1016/j.matlet.2018.03.095
Wong A B, Bekenstein Y, Kang J, Kley C S, Kim D, Gibson N A, Zhang D, Yu Y, Leone S R, Wang L W, Alivisatos A P, Yang P. Strongly quantum confined colloidal cesium tin iodide perovskite nanoplates: Lessons for reducing defect density and improving stability[J]. Nano Lett., 2018,18(3):2060-2066. doi: 10.1021/acs.nanolett.8b00077
Lim J W, Wang H, Choi C H, Kwon H, Quan L N, Park W T, Noh Y Y, Kim D H. Self-powered reduced-dimensionality perovskite photodiodes with controlled crystalline phase and improved stability[J]. Nano Energy, 2019,57:761-770. doi: 10.1016/j.nanoen.2018.12.068
El-Henawey M I, Gebhardt R S, El-Tonsy M M, Chaudhary S. Organic solvent vapor treatment of lead iodide layers in the two-step sequential deposition of CH3NH3PbI3-based perovskite solar cells[J]. J. Mater. Chem. A, 2016,4(5):1947-1952. doi: 10.1039/C5TA08656F
Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S Il. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015,517(7535):476-480. doi: 10.1038/nature14133
Hamill J C, Schwartz J, Loo Y L. Influence of solvent coordination on hybrid organic-inorganic perovskite formation[J]. ACS Energy Lett., 2018,3(1):92-97. doi: 10.1021/acsenergylett.7b01057
Duruibe J O, Ogwuegbu M O C, Egwurugwu J N. Heavy metal pollution and human biotoxic effects[J]. J. Phys. Sci., 2007,2(5):112-118.
Wang X T, Zhang T Y, Lou Y B, Zhao Y X. All-inorganic lead-free perovskites for optoelectronic applications[J]. Mater. Chem. Front., 2019,3(3):365-375. doi: 10.1039/C8QM00611C
Li B, Fu L, Li S, Li H, Pan L, Wang L, Chang B H, Yin L W. Pathways toward high-performance inorganic perovskite solar cells: Challenges and strategies[J]. J. Mater. Chem. A, 2019,7(36):20494-20518. doi: 10.1039/C9TA04114A
Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z, Jin Z, Liu J. All-inorganic perovskite solar cells[J]. J. Am. Chem. Soc., 2016,138(49):15829-15832. doi: 10.1021/jacs.6b10227
Ouedraogo N A N, Chen Y C, Xiao Y Y, Meng Q, Han C B, Yan H, Zhang Y Z. Stability of all-inorganic perovskite solar cells[J]. Nano Energy, 2020,67104249. doi: 10.1016/j.nanoen.2019.104249
WANG Y Y, ZHANG Y Z, WEI J W, MA Z W, ZENG H, ZHAO M, YANG C. First principles calculation on photoelectric properties of Cs2TiBr6 by substitution doping with Cl and Pd[J]. Chinese J. Inorg. Chem., 2022,38(5):884-890.
Wen X M, Wang Q, Li W, Li Y Y, Cheng S L, Wang J K, Kurosawa S, Wu Y T. Synthesis and characterization of all-inorganic perovskite cseubr3 single-crystal scintillator[J]. Phys. Status Solidi-Rapid Res. Lett., 2023,17(3)2200341. doi: 10.1002/pssr.202200341
Kokalj A. XCrySDen-A new program for displaying crystalline structures and electron densities[J]. J. Mol. Graph. Model., 1999,17(3/4):176-179.
Park B W, Philippe B, Zhang X L, Rensmo H, Boschloo G, Johansson E M J. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application[J]. Adv. Mater., 2015,27(43):6806-6813. doi: 10.1002/adma.201501978
Bass K K, Estergreen L, Savory C N, Buckeridge J, Scanlon D O, Djurovich P I, Bradforth S E, Thompson M E, Melot B C. Vibronic structure in room temperature photoluminescence of the halide perovskite Cs3Bi2Br9[J]. Inorg. Chem., 2017,56(1):42-45. doi: 10.1021/acs.inorgchem.6b01571
Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D. The SIESTA method for ab initio order-N materials simulation[J]. J. Phys.-Condes. Matter, 2002,14(11):2745-2779. doi: 10.1088/0953-8984/14/11/302
Ordejón P, Artacho E, Soler J M. Self-consistent order-N density-functional calculations for very large systems[J]. Phys. Rev. B, 1996,53(16):R10441-R10444. doi: 10.1103/PhysRevB.53.R10441
Heine V. The pseudopotential concept[J]. J. Solid State Phy., 1970,24:1-36.
Ghosh B, Chakraborty S, Wei H, Guet C, Li S. Poor photovoltaic performance of Cs3Bi2I9: An insight through first-principles calculations[J]. J. Phys. Chem., 2017,121(32):17062-17067.
Bass K K, Estergreen L, Savory C N, Buckeridge J, Scanlon D O, Djurovich P I. Vibronic structure in room temperature photoluminescence of the halide perovskite Cs3Bi2Br9[J]. Inorg. Chem., 2016,56(1):42-45.
John P, Perdew K B, Matthias E. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865
Kihara K, Sudo T. The crystal structures of β‑Cs3Sb2Cl9 and Cs3Bi2Cl9[J]. Acta Crystallogr. Sect. B, 1974,30(4):1088-1093. doi: 10.1107/S0567740874004316
Chang J H, Doert T, Ruck M. Structural variety of defect perovskite variants M3E2X9 (M=Rb, Tl, E=Bi, Sb, X=Br, I)[J]. Z. Anorg. Allg. Chem., 2016,642(13):736-748. doi: 10.1002/zaac.201600179
Jung H S, Park N G. Perovskite solar cells: From materials to devices[J]. Small, 2015,11(1):10-25. doi: 10.1002/smll.201402767
Pradhan A, Sahoo S C, Sahu A K. Effect of Bi substitution on Cs3Sb2Cl9: Structural phase transition and band gap engineering[J]. Crystal Growth Design, 2020,20(5):3386-3395. doi: 10.1021/acs.cgd.0c00171
Peresh E Y, Sidei V I, Zubaka O V. K2(Rb2, Cs2, Tl2)TeBr6(I6) and Rb3(Cs3)Sb2(Bi2)Br9(I9) perovskite compounds[J]. Inorg. Mater., 2011,47(2):208-212. doi: 10.1134/S0020168511010109
Bass K K, Estergreen L, Savory C N. Vibronic structure in room temperature photoluminescence of the halide perovskite Cs3Bi2Br9[J]. Inorg. Chem., 2017,56(1):42-45. doi: 10.1021/acs.inorgchem.6b01571
Sidey V I, Zubaka O V, Peresh Y Y. Ternary halides A3B2C9: Crystallochemical peculiarities, dependence of some properties on the average nuclear charge[J]. Sci. Bull. Uzhh. Univ. Ser. Chem., 2018,39(1):10-16.
Zhang Y, Yin J, Parida M R, Ahmed G H, Pan J, Bakr O M, Brédas J L, Mohammed O F. Direct-indirect nature of the bandgap in lead-free perovskite nanocrystals[J]. J. Phys. Chem. Lett., 2017,8(14):3173-3177. doi: 10.1021/acs.jpclett.7b01381
Jong U G, Yu C J, Kye Y H, Choe Y G, Hao W, Li S Z. First-principles study on structural, electronic, and optical properties of inorganic Ge-based halide perovskites[J]. Inorg. Chem., 2019,58(7):4134-4140. doi: 10.1021/acs.inorgchem.8b03095
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
The charge density increases from blue to red.
(a) The K point of Cs3Bi2Cl9 is from Γ (0, 0, 0) to Y (0.5, 0, 0); (b, c) The K points of Cs3Bi2Cl9 are from M (0, 0.5, 0) to Γ (0, 0, 0); The Fermi energy level was set as zero.