Continuous catalytic transfer hydrogenation of methanol as hydrogen source to synthesize aromatic amines
- Corresponding author: Xinhuan YAN, xhyan@zjut.edu.cn
Citation: Xueli HONG, Yunyang HONG, Suhong SONG, Qianxi WANG, Xinhuan YAN. Continuous catalytic transfer hydrogenation of methanol as hydrogen source to synthesize aromatic amines[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 430-440. doi: 10.11862/CJIC.20230263
Yao W B, Wang J L, Lou Y P, Wu H J, Qi X X, Yang J G, Zhong A G. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst[J]. Org. Chem. Front., 2021,8(16):4554-4559. doi: 10.1039/D1QO00705J
Kita Y, Kai S, Rustad L B S, Kamata K, Hara M. One-pot reductive amination of carbonyl compounds with nitro compounds over a Ni/NiO composite[J]. RSC Adv., 2020,10(54):32296-32300. doi: 10.1039/D0RA06937J
Magano J, Dunetz J R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals[J]. Chem. Rev., 2011,111(3):2177-2250. doi: 10.1021/cr100346g
Bai Y W, Wang Q Z, Du C B, Bu T, Liu Y N, Sun X Y, Luo W F, Li R, Zhao Y J, Zheng X H, Wang L. Three-dimensional Cu/C porous composite: Facile fabrication and efficient catalytic reduction of 4-nitrophenol[J]. J. Colloid Interface Sci., 2019,553(1):768-777.
Silva T R, de Oliveira D C, Pal T, Domingos J B. The catalytic evaluation of bimetallic Pd-based nanocatalysts supported on ion exchange resin in nitro and alkyne reduction reactions[J]. New J. Chem., 2019,43(18):7083-7092. doi: 10.1039/C9NJ00285E
Su J, Zou X X, Li G D, Li L, Zhao J, Chen J S. Porous vanadium-doped titania with active hydrogen: A renewable reductant for chemoselective hydrogenation of nitroarenes under ambient conditions[J]. Chem. Commun., 2012,48(72):9032-9034. doi: 10.1039/c2cc33969b
Rezaei S J T, Malekzadeh A M, Poulaei S, Ramazani A, Khorramabadi H. Chemo-selective reduction of nitro and nitrile compounds using Ni nanoparticles immobilized on hyperbranched polymer-functionalized magnetic nanoparticles[J]. Appl. Organomet. Chem., 2018,32(1):1-13.
Zhang K Q, Hong K, Suh J M, Lee T H, Kwon O, Shokouhimehr M, Jang H W. Facile synthesis of monodispersed Pd nanocatalysts decorated on graphene oxide for reduction of nitroaromatics in aqueous solution[J]. Res. Chem. Intermed., 2018,45(2):599-611.
Alexander S, Udayakumar V, Nagaraju N, Gayathri V. Hydrogenation of substituted nitroarenes by a polymer-bound palladium(Ⅱ) Schiff base catalyst[J]. Transit. Met. Chem., 2009,35(2):247-251.
Song J J, Huang Z F, Pan L, Li K, Zhang X W, Wang L, Zou J J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions[J]. Appl. Catal. B-Environ., 2018,227(1):386-408.
Supriya P, Srinivas B T V, Chowdeswari K, Naidu N V S, Sreedhar B. Biomimetic synthesis of gum acacia mediated Pd‑ZnO and Pd‑TiO2‑Promising nanocatalysts for selective hydrogenation of nitroarenes[J]. Mater. Chem. Phys., 2018,204:27-36. doi: 10.1016/j.matchemphys.2017.10.026
Rao S, Prabhu K R. Stereodivergent alkyne reduction by using water as the hydrogen source[J]. Chem.-Eur. J., 2018,24(52):13954-13962. doi: 10.1002/chem.201803147
Nie R, Tao Y, Nie Y, Lu T, Wang J, Zhang Y, Lu X, Xu C C. Recent advances in catalytic transfer hydrogenation with formic acid over heterogeneous transition metal catalysts[J]. ACS Catal., 2021,11(3):1071-1095. doi: 10.1021/acscatal.0c04939
XU X S, CHEN A A, ZHOU L, LI X Q, GU H Z, YAN X H. Catalytic stability of othro-chloronitrobenzene hydrogenation on Ru‑Fe/C catalyst[J]. Chin. J. Catal., 2014,34(2):391-396.
CHEN A A, XU X S, HUA Y X, GU H Z, YAN X H. Fe3O4 modified alumina supported ruthenium catalyst for novel in-situ liquid phase catalytic hydrogenation[J]. Acta Phys.-Chim. Sin., 2013,29(4):799-805.
Aboo A H, Bennett E L, Deeprose M, Robertson C M, Iggo J A, Xiao J. Methanol as hydrogen source: Transfer hydrogenation of aromatic aldehydes with a rhodacycle[J]. Chem. Commun., 2018,54(83):11805-11808. doi: 10.1039/C8CC06612D
Sklyaruk J, Zubar V, Borghs J C, Rueping M. Methanol as the hydrogen source in the selective transfer hydrogenation of alkynes enabled by a manganese pincer complex[J]. Org. Lett., 2020,22(15):6067-6071. doi: 10.1021/acs.orglett.0c02151
Wang R Z, Han X Y, Xu J, Liu P, Li F. Transfer hydrogenation of ketones and imines with methanol under base-free conditions catalyzed by an anionic metal-ligand bifunctional iridium catalyst[J]. J. Org. Chem., 2020,85(4):2242-2249. doi: 10.1021/acs.joc.9b02957
Zhang J, Chen J Z. Selective transfer hydrogenation of biomass-based furfural and 5-hydroxymethylfurfural over hydrotalcite‑ derived copper catalysts using methanol as a hydrogen donor[J]. ACS Sustain. Chem. Eng., 2017,5(7):5982-5993. doi: 10.1021/acssuschemeng.7b00778
Pelckmans M, Renders T, Van de Vyver S, Sels B F. Bio-based amines through sustainable heterogeneous catalysis[J]. Green Chem., 2017,19(22):5303-5331. doi: 10.1039/C7GC02299A
López-Asensio R, Cecilia J A, Jiménez-Gómez C P, García-Sancho C, Moreno-Tost R, Maireles-Torres P.. Selective production of furfuryl alcohol from furfural by catalytic transfer hydrogenation over commercial aluminas[J]. Appl. Catal. A-Gen., 2018,556(1):1-9.
Wang D, Astruc D. The golden age of transfer hydrogenation[J]. Chem. Rev., 2015,115(13):6621-6686. doi: 10.1021/acs.chemrev.5b00203
HUANG T, CAO Z Q, JIANG S P, LI N, XIA X X, DING W, LI F. Study on catalytic transfer hydrogenation of furfural over Fe3O4 modified carbon nanotubes supported Ru catalyst[J]. Energy Chemical Industry, 2020,41(2):1-6.
LI P, QIN P D, WANG Y Y, WANG Y, LI C Q, LI F. Study on catalytic transfer hydrogenation of furfural by defects modified UiO-66[J]. Energy Chemical Industry, 2022,43(4):1-5.
Xiang Y Z, Li X N, Lu C S, Ma L, Zhang Q F. Water-improved heterogeneous transfer hydrogenation using methanol as hydrogen donor over Pd-based catalyst[J]. Appl. Catal. A-Gen., 2010,375(2):289-294. doi: 10.1016/j.apcata.2010.01.004
Zhao G Q, Chen H H, Yuan Y, Li X C, Zhu Z R. New process of 2-nitrotoluene into 2-methylaniline by transfer hydrogenation with methanol over X zeolite catalyst[J]. Catal. Lett., 2015,146(1):174-179.
Goyal V, Sarki N, Natte K, Ray A. Pd/C-catalyzed transfer hydrogenation of aromatic nitro compounds using methanol as a hydrogen source[J]. J. Indian Chem. Soc., 2021,98(1):1-4.
Song S H, Dai Y Y, Hong Y Y, Li X Q, Yan X H. A simple continuous reaction for the synthesis of quinoline compounds[J]. Green Chem., 2022,24(4):1714-1720. doi: 10.1039/D1GC03064G
Martínez J J, Rojas H, Vargas L, Parra C, Brijaldo M H, Passos F B. Hydrogenation of m-dinitrobenzene over Au catalysts on magnetic supports[J]. J. Mol. Catal. A-Chem., 2014,383(1):31-37.
Li F, Zhu W X, Jiang S S, Wang Y, Song H, Li C Q. Catalytic transfer hydrogenation of furfural to furfuryl alcohol over Fe3O4 modified Ru/carbon nanotubes catalysts[J]. Int. J. Hydrog. Energy, 2020,45(3):1981-1990. doi: 10.1016/j.ijhydene.2019.11.139
Wang H J, Wang Y, Li Y F, Lan X C, Ali B, Wang T F. Highly efficient hydrogenation of nitroarenes by N-doped carbon-supported cobalt single-atom catalyst in ethanol/water mixed solvent[J]. ACS Appl. Mater. Interfaces, 2020,12(30):34021-34031. doi: 10.1021/acsami.0c06632
Velisoju V K, Peddakasu G B, Gutta N, Boosa V, Kandula M, Chary K V R, Akula V. Influence of support for ru and water role on product selectivity in the vapor-phase hydrogenation of levulinic acid to γ-valerolactone: Investigation by probe-adsorbed Fourier transform infrared spectroscopy[J]. J. Phys. Chem. C, 2018,122(34):19670-19677. doi: 10.1021/acs.jpcc.8b06003
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Kexin Yuan , Yulei Liu , Haoran Feng , Yi Liu , Jun Cheng , Beiyang Luo , Qinglian Wu , Xinyu Zhang , Ying Wang , Xian Bao , Wanqian Guo , Jun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Haoyang Wang , Ronghao Zhang , Yanlun Ren , Li Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Xiao-Ya Yuan , Cong-Cong Wang , Bing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517
Common reaction conditions: mass fraction of 2% m-DNB, 5 g 5%Ru-5%Fe/γ-Al2O3; Reaction conditions in A: 1 mL·min-1, 130 ℃, 3 MPa; Reaction conditions in B: 1 mL·min-1, 3 MPa, methanol/water volume ratio of 8∶2; Reaction conditions in C: 1 mL·min-1, 130 ℃, methanol/water volume ratio of 8∶2; Reaction conditions in D: 1 mL·min-1, 130 ℃, 3 MPa, methanol/water volume of ratio 8∶2.
Reaction conditions: mass fraction of 2% m-DNB, 5 g 5%Ru/γ-Al2O3, 1 mL·min-1, 130 ℃, 3 MPa, methanol/water volume ratio of 8∶2.