Citation: Xueli HONG, Yunyang HONG, Suhong SONG, Qianxi WANG, Xinhuan YAN. Continuous catalytic transfer hydrogenation of methanol as hydrogen source to synthesize aromatic amines[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 430-440. doi: 10.11862/CJIC.20230263 shu

Continuous catalytic transfer hydrogenation of methanol as hydrogen source to synthesize aromatic amines

  • Corresponding author: Xinhuan YAN, xhyan@zjut.edu.cn
  • Received Date: 11 July 2023
    Revised Date: 24 November 2023

Figures(7)

  • A mild and efficient method for continuous transfer hydrogenation of nitroaromatics catalyzed by Ru-Fe bimetallic catalyst with methanol as hydrogen source was developed. Ru-Fe bimetallic catalysts were prepared by impregnation method and characterized by inductively coupled plasma-mass spectrometry (ICP-MS), transmission electron microscopy (TEM), X-ray diffraction (XRD), and hydrogen temperature-programmed reduction (H2-TPR). The results showed that the catalyst had smaller particle size and better dispersion. On the Ru-Fe bimetallic catalyst, the continuous transfer hydrogenation of nitroaromatics and methanol to aromatic amines without external hydrogenation source was successfully realized. A series of amines with high yields were successfully obtained by adjusting the reaction conditions. In particular, the method exhibited excellent selectivity and conversion for the hydrogenation of unsaturated group (aldehyde, carbonyl or alkynyl) substituted nitroaromatics.
  • 加载中
    1. [1]

      Yao W B, Wang J L, Lou Y P, Wu H J, Qi X X, Yang J G, Zhong A G. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst[J]. Org. Chem. Front., 2021,8(16):4554-4559. doi: 10.1039/D1QO00705J

    2. [2]

      Kita Y, Kai S, Rustad L B S, Kamata K, Hara M. One-pot reductive amination of carbonyl compounds with nitro compounds over a Ni/NiO composite[J]. RSC Adv., 2020,10(54):32296-32300. doi: 10.1039/D0RA06937J

    3. [3]

      Magano J, Dunetz J R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals[J]. Chem. Rev., 2011,111(3):2177-2250. doi: 10.1021/cr100346g

    4. [4]

      Bai Y W, Wang Q Z, Du C B, Bu T, Liu Y N, Sun X Y, Luo W F, Li R, Zhao Y J, Zheng X H, Wang L. Three-dimensional Cu/C porous composite: Facile fabrication and efficient catalytic reduction of 4-nitrophenol[J]. J. Colloid Interface Sci., 2019,553(1):768-777.

    5. [5]

      Silva T R, de Oliveira D C, Pal T, Domingos J B. The catalytic evaluation of bimetallic Pd-based nanocatalysts supported on ion exchange resin in nitro and alkyne reduction reactions[J]. New J. Chem., 2019,43(18):7083-7092. doi: 10.1039/C9NJ00285E

    6. [6]

      Su J, Zou X X, Li G D, Li L, Zhao J, Chen J S. Porous vanadium-doped titania with active hydrogen: A renewable reductant for chemoselective hydrogenation of nitroarenes under ambient conditions[J]. Chem. Commun., 2012,48(72):9032-9034. doi: 10.1039/c2cc33969b

    7. [7]

      Rezaei S J T, Malekzadeh A M, Poulaei S, Ramazani A, Khorramabadi H. Chemo-selective reduction of nitro and nitrile compounds using Ni nanoparticles immobilized on hyperbranched polymer-functionalized magnetic nanoparticles[J]. Appl. Organomet. Chem., 2018,32(1):1-13.

    8. [8]

      Zhang K Q, Hong K, Suh J M, Lee T H, Kwon O, Shokouhimehr M, Jang H W. Facile synthesis of monodispersed Pd nanocatalysts decorated on graphene oxide for reduction of nitroaromatics in aqueous solution[J]. Res. Chem. Intermed., 2018,45(2):599-611.

    9. [9]

      Alexander S, Udayakumar V, Nagaraju N, Gayathri V. Hydrogenation of substituted nitroarenes by a polymer-bound palladium(Ⅱ) Schiff base catalyst[J]. Transit. Met. Chem., 2009,35(2):247-251.

    10. [10]

      Song J J, Huang Z F, Pan L, Li K, Zhang X W, Wang L, Zou J J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions[J]. Appl. Catal. B-Environ., 2018,227(1):386-408.

    11. [11]

      Supriya P, Srinivas B T V, Chowdeswari K, Naidu N V S, Sreedhar B. Biomimetic synthesis of gum acacia mediated Pd‑ZnO and Pd‑TiO2‑Promising nanocatalysts for selective hydrogenation of nitroarenes[J]. Mater. Chem. Phys., 2018,204:27-36. doi: 10.1016/j.matchemphys.2017.10.026

    12. [12]

      Rao S, Prabhu K R. Stereodivergent alkyne reduction by using water as the hydrogen source[J]. Chem.-Eur. J., 2018,24(52):13954-13962. doi: 10.1002/chem.201803147

    13. [13]

      Nie R, Tao Y, Nie Y, Lu T, Wang J, Zhang Y, Lu X, Xu C C. Recent advances in catalytic transfer hydrogenation with formic acid over heterogeneous transition metal catalysts[J]. ACS Catal., 2021,11(3):1071-1095. doi: 10.1021/acscatal.0c04939

    14. [14]

      XU X S, CHEN A A, ZHOU L, LI X Q, GU H Z, YAN X H. Catalytic stability of othro-chloronitrobenzene hydrogenation on Ru‑Fe/C catalyst[J]. Chin. J. Catal., 2014,34(2):391-396.

    15. [15]

      CHEN A A, XU X S, HUA Y X, GU H Z, YAN X H. Fe3O4 modified alumina supported ruthenium catalyst for novel in-situ liquid phase catalytic hydrogenation[J]. Acta Phys.-Chim. Sin., 2013,29(4):799-805.

    16. [16]

      Aboo A H, Bennett E L, Deeprose M, Robertson C M, Iggo J A, Xiao J. Methanol as hydrogen source: Transfer hydrogenation of aromatic aldehydes with a rhodacycle[J]. Chem. Commun., 2018,54(83):11805-11808. doi: 10.1039/C8CC06612D

    17. [17]

      Sklyaruk J, Zubar V, Borghs J C, Rueping M. Methanol as the hydrogen source in the selective transfer hydrogenation of alkynes enabled by a manganese pincer complex[J]. Org. Lett., 2020,22(15):6067-6071. doi: 10.1021/acs.orglett.0c02151

    18. [18]

      Wang R Z, Han X Y, Xu J, Liu P, Li F. Transfer hydrogenation of ketones and imines with methanol under base-free conditions catalyzed by an anionic metal-ligand bifunctional iridium catalyst[J]. J. Org. Chem., 2020,85(4):2242-2249. doi: 10.1021/acs.joc.9b02957

    19. [19]

      Zhang J, Chen J Z. Selective transfer hydrogenation of biomass-based furfural and 5-hydroxymethylfurfural over hydrotalcite‑ derived copper catalysts using methanol as a hydrogen donor[J]. ACS Sustain. Chem. Eng., 2017,5(7):5982-5993. doi: 10.1021/acssuschemeng.7b00778

    20. [20]

      Pelckmans M, Renders T, Van de Vyver S, Sels B F. Bio-based amines through sustainable heterogeneous catalysis[J]. Green Chem., 2017,19(22):5303-5331. doi: 10.1039/C7GC02299A

    21. [21]

      López-Asensio R, Cecilia J A, Jiménez-Gómez C P, García-Sancho C, Moreno-Tost R, Maireles-Torres P.. Selective production of furfuryl alcohol from furfural by catalytic transfer hydrogenation over commercial aluminas[J]. Appl. Catal. A-Gen., 2018,556(1):1-9.

    22. [22]

      Wang D, Astruc D. The golden age of transfer hydrogenation[J]. Chem. Rev., 2015,115(13):6621-6686. doi: 10.1021/acs.chemrev.5b00203

    23. [23]

      HUANG T, CAO Z Q, JIANG S P, LI N, XIA X X, DING W, LI F. Study on catalytic transfer hydrogenation of furfural over Fe3O4 modified carbon nanotubes supported Ru catalyst[J]. Energy Chemical Industry, 2020,41(2):1-6.

    24. [24]

      LI P, QIN P D, WANG Y Y, WANG Y, LI C Q, LI F. Study on catalytic transfer hydrogenation of furfural by defects modified UiO-66[J]. Energy Chemical Industry, 2022,43(4):1-5.

    25. [25]

      Xiang Y Z, Li X N, Lu C S, Ma L, Zhang Q F. Water-improved heterogeneous transfer hydrogenation using methanol as hydrogen donor over Pd-based catalyst[J]. Appl. Catal. A-Gen., 2010,375(2):289-294. doi: 10.1016/j.apcata.2010.01.004

    26. [26]

      Zhao G Q, Chen H H, Yuan Y, Li X C, Zhu Z R. New process of 2-nitrotoluene into 2-methylaniline by transfer hydrogenation with methanol over X zeolite catalyst[J]. Catal. Lett., 2015,146(1):174-179.

    27. [27]

      Goyal V, Sarki N, Natte K, Ray A. Pd/C-catalyzed transfer hydrogenation of aromatic nitro compounds using methanol as a hydrogen source[J]. J. Indian Chem. Soc., 2021,98(1):1-4.

    28. [28]

      Song S H, Dai Y Y, Hong Y Y, Li X Q, Yan X H. A simple continuous reaction for the synthesis of quinoline compounds[J]. Green Chem., 2022,24(4):1714-1720. doi: 10.1039/D1GC03064G

    29. [29]

      Martínez J J, Rojas H, Vargas L, Parra C, Brijaldo M H, Passos F B. Hydrogenation of m-dinitrobenzene over Au catalysts on magnetic supports[J]. J. Mol. Catal. A-Chem., 2014,383(1):31-37.

    30. [30]

      Li F, Zhu W X, Jiang S S, Wang Y, Song H, Li C Q. Catalytic transfer hydrogenation of furfural to furfuryl alcohol over Fe3O4 modified Ru/carbon nanotubes catalysts[J]. Int. J. Hydrog. Energy, 2020,45(3):1981-1990. doi: 10.1016/j.ijhydene.2019.11.139

    31. [31]

      Wang H J, Wang Y, Li Y F, Lan X C, Ali B, Wang T F. Highly efficient hydrogenation of nitroarenes by N-doped carbon-supported cobalt single-atom catalyst in ethanol/water mixed solvent[J]. ACS Appl. Mater. Interfaces, 2020,12(30):34021-34031. doi: 10.1021/acsami.0c06632

    32. [32]

      Velisoju V K, Peddakasu G B, Gutta N, Boosa V, Kandula M, Chary K V R, Akula V. Influence of support for ru and water role on product selectivity in the vapor-phase hydrogenation of levulinic acid to γ-valerolactone: Investigation by probe-adsorbed Fourier transform infrared spectroscopy[J]. J. Phys. Chem. C, 2018,122(34):19670-19677. doi: 10.1021/acs.jpcc.8b06003

  • 加载中
    1. [1]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    2. [2]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    3. [3]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    4. [4]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    5. [5]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    6. [6]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    7. [7]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    8. [8]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    9. [9]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    10. [10]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    11. [11]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    12. [12]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    13. [13]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    14. [14]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    15. [15]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    16. [16]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    17. [17]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    18. [18]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    19. [19]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    20. [20]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

Metrics
  • PDF Downloads(0)
  • Abstract views(341)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return