Citation: Xingxing SHENG, Feng XIAO, Jinbin LÜ. Luminescence characteristics and device applications of Cr3+-doped Ca4HfGe3O12 broadband near-infrared phosphors[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 345-352. doi: 10.11862/CJIC.20230260 shu

Luminescence characteristics and device applications of Cr3+-doped Ca4HfGe3O12 broadband near-infrared phosphors

  • Corresponding author: Xingxing SHENG, 1531352712@qq.com
  • Received Date: 10 July 2023
    Revised Date: 17 November 2023

Figures(7)

  • Near-infrared phosphor has shown an important application prospect in the fields of living organism imaging. However, the near-infrared phosphor for organism imaging has some bottleneck problems such as a lack of variety and poor thermal stability. Broadband near-infrared Ca4HfGe3O12xCr3+ (0≤x≤0.09) phosphors were synthesized by the solid phase method. X-ray diffraction and energy spectrum analysis showed that Cr3+ ions successfully entered the Ca4HfGe3O12 crystal lattice. Upon 469 nm excitation, Ca4HfGe3O12xCr3+ phosphors presented a width emission band covering 690-1 200 nm (strongest peak of 825 nm for 4T2-4A2, bandwidth of 141 nm) with a fluorescence quantum efficiency of 33.63% (x=0.03), which exhibited good thermal stability, 60.5% of room temperature intensity at 400 K. The excitation peak shape and lifetime decay behavior results showed that Cr3+ occupies only one cation sites in the matrix. In addition, the self-made near-infrared phosphor conversion device was used to illuminate the palm of the human hand and the fruit shielded by the 700 nm filter, and the venous vessels and the shelter-fruit outline were clearly observed.
  • 加载中
    1. [1]

      Jin G Q, Chau C V, Arambula J F, Gao S, Sessler J L, Zhang J L. Lanthanide porphyrinoids as molecular theranostics[J]. Chem. Soc. Rev., 2022,51:6177-6209. doi: 10.1039/D2CS00275B

    2. [2]

      HE X G, HUANG D C, SONG L P, LIANG S S, ZHU H M. Near-infrared photoluminescence properties of NaAlP2O7∶Cr3+ phosphor[J]. Chinese J. Lumin., 2022,43(9):1380-1389.

    3. [3]

      Zheng L W, Kuang J L, Shen J X, Wu H, Luo Y S, Pan G H, Hao Z D, Zhang L L, Zhang J H. Spectral broadening in Cr3+-doped Sr0.92Mg0.91Al10.1O17 NIR phosphor realized by multi-crystallographic site occupation[J]. ACS Appl. Opt. Mater., 2023,1:1150-1155. doi: 10.1021/acsaom.3c00086

    4. [4]

      Sojka M, Zhong J Y, Brgoch J. Developing broadband Cr3+-substituted phosphor-converted near-infrared light sources[J]. ACS Appl. Opt. Mater., 2023,1:1138-1149. doi: 10.1021/acsaom.3c00058

    5. [5]

      WANG C J, QIAO X S, FAN X P. Research progress on blue LED excited Cr3+ doped phosphors with broad-band near-infrared luminescence[J]. Chinese J. Lumin., 2022,43(12):1855-1870. doi: 10.37188/CJL.20220271

    6. [6]

      Zhang L S, Li C J, Zhong J Y, Wen J, Zhao W R. Thermally robust broadband near-infrared luminescence in the NaGaP2O7∶Cr3+ phosphor[J]. ACS Appl. Opt. Mater., 2023,1:85-93. doi: 10.1021/acsaom.2c00011

    7. [7]

      Yan Y, Shang M M, Huang S, Wang Y N, Sun Y X, Dang P P, Lin J. Photoluminescence properties of AScSi2O6∶Cr3+ (A=Na and Li) phosphors with high efficiency and thermal stability for near-infrared phosphor-converted light-emitting diode light sources[J]. ACS Appl. Mater. Interfaces, 2022,14(6):8179-8190. doi: 10.1021/acsami.1c23940

    8. [8]

      Ning Y Y, Zhu M L, Zhang J L. Near-infrared (NIR) lanthanide molecular probes for bioimaging and biosensing[J]. Coord. Chem. Rev., 2019,399213028. doi: 10.1016/j.ccr.2019.213028

    9. [9]

      Zhao F Y, Song Z, Liu Q L. Advances in chromium-activated phosphors for near-infrared light sources[J]. Laser Photon. Rev., 20222200380.

    10. [10]

      Miao S H, Liang Y J, Zhang Y, Chen D X, Wang X J. Broadband short-wave infrared light-emitting diodes based on Cr3+-doped LiScGeO4 phosphor[J]. ACS Appl. Mater. Interfaces, 2021,13:36011-36019. doi: 10.1021/acsami.1c10490

    11. [11]

      Xiao Y, Xiao W G, Wu D, Guan L Q, Luo M, Sun L D. An extra-broadband VIS-NIR emitting phosphor toward multifunctional LED applications[J]. Adv. Funct. Mater., 2022,322109618. doi: 10.1002/adfm.202109618

    12. [12]

      Lin Q M, Wang Q, Liao M, Xiong M M, Feng X, Zhang X, Dong H F, Zhu D Y, Wu F G, Mu Z F. Trivalent chromium ions doped fluorides with both broad emission bandwidth and excellent luminescence thermal stability[J]. ACS Appl. Mater. Interfaces, 2021,13:18274-18282. doi: 10.1021/acsami.1c01417

    13. [13]

      Wu Y L, Li Y, Qin X X, Chen R C, Wu D K, Liu S J, Qiu J R. Dual mode NIR long persistent phosphorescence and NIR-to-NIR stokes luminescence in La3Ga5GeO14∶Cr3+, Nd3+ phosphor[J]. J. Alloy. Compd., 2015,649:62-66. doi: 10.1016/j.jallcom.2015.05.037

    14. [14]

      Fang M H, Huang P Y, Bao Z, Majewska N, Lesniewski T, Mahlik S, Grinberg M, Leniec G, Kaczmarek S M, Yang C W, Lu K M, Sheu H S, Liu R S. Penetrating biological tissue using light-emitting diodes with a highly efficient near-infrared ScBO3∶Cr3+ phosphor[J]. Chem. Mater., 2020,32:2166-2171. doi: 10.1021/acs.chemmater.0c00101

    15. [15]

      Jiang L P, Jiang X, Zhang L L, Liu Q S, Mi X Y, Yu Z, Lv G C, Su Y J. Broadband near-infrared luminescence in garnet Y3Ga3MgSiO12∶Cr3+ phosphors[J]. Inorg. Chem., 2023,62:4220-4226. doi: 10.1021/acs.inorgchem.2c04319

    16. [16]

      Xiang J M, Zheng J M, Zhao X Q, Zhou X, Chen C H, Jin M K, Guo C F. Synthesis of broadband NIR garnet phosphor Ca4ZrGe3O12∶Cr3+, Yb3+ for NIR pc-LED applications[J]. Mater. Chem. Front., 2022,6:440-449. doi: 10.1039/D1QM01540K

    17. [17]

      Li C J, Zhong J Y. Efficient and thermally robust broadband near-infrared emission in a garnet Ca3MgHfGe3O12∶Cr3+ phosphor[J]. Adv. Opt. Mater., 2023,112202323. doi: 10.1002/adom.202202323

    18. [18]

      Nie W D, Yao L Q, Chen G, Wu S H, Liao Z J, Han L, Ye X Y. A novel Cr3+-doped Lu2CaMg2Si3O12 garnet phosphor with broadband emission for near-infrared applications[J]. Dalton Trans., 2021,50:8446-8456. doi: 10.1039/D1DT01195B

    19. [19]

      Li C J, Zhong J Y. Highly efficient broadband near-infrared luminescence with zero-thermal-quenching in garnet Y3In2Ga3O12∶Cr3+ phosphors[J]. Chem. Mater., 2022,34:8418-8426. doi: 10.1021/acs.chemmater.2c02174

    20. [20]

      Piao S Q, Wang Y C, Zhang J S, Zhang X Z, Wu D Y, Cao Y Z, Li X P, Chen B J. A tunable blue-cyan dual emission phosphor in Ca4-xLu2xHf1-xGe3O12∶Bi3+ via forming segregation structure for WLEDs[J]. J. Am. Ceram. Soc., 2022,105:7522-7534. doi: 10.1111/jace.18708

    21. [21]

      Liao Z R, Zhong J Y, Li C J, Jiang H, Zhao W R. Understanding the broadband near-infrared luminescence in a highly distorted garnet Ca4HfGe3O12∶Cr3+ phosphor[J]. Phys. Chem. Chem. Phys., 2023,25:15452-15462. doi: 10.1039/D3CP01547E

    22. [22]

      Bai B, Dang P P, Huang D Y, Lian H Z, Lin J. Broadband near-infrared emitting Ca2LuScGa2Ge2O12∶Cr3+ phosphors: Luminescence properties and application in light-emitting diodes[J]. Inorg. Chem., 2020,59:13481-13488. doi: 10.1021/acs.inorgchem.0c01890

    23. [23]

      Dai P P, Liu L, Xiang M. Remotely control Eu2+ emissions by modulating structural ordering of PO4 anion-groups in (Sr3-xCax)Ce(PO4)3∶Eu2+ phosphors[J]. Mater. Res. Bull., 2021,136111157. doi: 10.1016/j.materresbull.2020.111157

    24. [24]

      Qiao J W, Zhao J, Liu Q L, Xia Z G. Recent advances in solid-state LED phosphors with thermally stable luminescence[J]. J. Rare Earth, 2019,37:565-572. doi: 10.1016/j.jre.2018.11.001

    25. [25]

      Mao N, Liu S Q, Song Z, Yu Yi, Liu Q L. A broadband near-infrared phosphor Ca3Y2Ge3O12∶Cr3+ with garnet structure[J]. J. Alloy. Compd., 2021,863158699. doi: 10.1016/j.jallcom.2021.158699

    26. [26]

      Mao M Q, Zhou T L, Zeng H T, Wang L, Huang F, Tang X Y, Xie R J. Broadband near-infrared (NIR) emission realized by the crystal-field engineering of Y3-xCaxAl5-xSixO12∶Cr3+ (x=0-2.0) garnet phosphors[J]. J. Mater. Chem. C, 2020,8:1981-1988. doi: 10.1039/C9TC05775G

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    3. [3]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    6. [6]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    7. [7]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    8. [8]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    9. [9]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    10. [10]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    11. [11]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    16. [16]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    17. [17]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    18. [18]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

Metrics
  • PDF Downloads(0)
  • Abstract views(355)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return