Citation: Xinlong WANG, Zhenguo CHENG, Guo WANG, Xiaokuen ZHANG, Yong XIANG, Xinquan WANG. Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259 shu

Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F

  • Corresponding author: Xinquan WANG, wangxinquan@uestc.edu.cn
  • Received Date: 10 July 2023
    Revised Date: 9 January 2024

Figures(6)

  • Low-concentration gradient-modified samples of LiCoO2 were prepared by sintering at 1 050℃ using high-temperature solid-phase method, and were coated with LiF doping (LCOLF, LCO@LF) and MgF2 doping (LCOMF, LCO@MF). The material morphologies and electrochemical properties were compared and analyzed utilizing characterization tests such as X-ray photoelectron spectroscopy, transmission electron microscopy, and electrochemical techniques. The results show that in bulk-doping composite electrodes, the thermogravimetric test demonstrated that LCOLF had optimal thermal stability. In LCOMF crystals, crystal plane spacing of (003) and (104) contracted; after 70 cycles at 1C rate under 45℃, the specific capacities of LCOLF and LCOMF were 141.45 and 166.98 mAh·g-1 respectively, and their cycling performance was superior to that of the LiCoO2. In the surface-coated composite electrodes, LCO@LF and LCO@MF grains had clean surfaces and the bond valence of lattice oxygen was enhanced toward higher binding energy; LCO@MF built a solid and compact coating layer, and the specific capacity and capacity retention after 70 cycles were 183 mAh·g-1 and 91.26% (that of LCO@LF were respectively 154.38 mAh·g-1 and 77.54%). The cycling performance of surface-coated composite electrodes was significantly better than that of bulk-doping composite electrodes.
  • 加载中
    1. [1]

      Zhang L P, Li X L, Yang M R, Chen W H. High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective[J]. Energy Storage Mater., 2021,41:522-545. doi: 10.1016/j.ensm.2021.06.033

    2. [2]

      Lyu Y C, Wu X, Wang K, Feng Z J, Cheng T, Liu Y, Wang M, Chen R M, Xu L M, Zhou J J, Lu Y H, Guo B K. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries[J]. Adv. Energy Mater., 2021,11(2)2000982. doi: 10.1002/aenm.202000982

    3. [3]

      Yang X R, Wang C W, Yan P F, Jiao T P, Hao J L, Jiang Y Y, Ren F C, Zhang W G, Zheng J M, Cheng Y, Wang X S, Yang W, Zhu J P, Pan S Y, Lin M, Zeng L Y, Gong Z L, Li J T, Yang Y. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering[J]. Adv. Energy Mater., 2022,12(23)2200197. doi: 10.1002/aenm.202200197

    4. [4]

      Wang L L, Ma J, Wang C, Yu X R, Liu R, Jiang F, Sun X W, Du A B, Zhou X H, Cui G L. A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability[J]. Adv. Sci., 2019,6(12)1900355. doi: 10.1002/advs.201900355

    5. [5]

      Zhang J X, Wang P F, Bai P X, Wan H L, Liu S F, Hou S, Pu X J, Xia J L, Zhang W R, Wang Z Y, Nan B, Zhang X Y, Xu J J, Wang C S. Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode[J]. Adv. Mater., 2022,34(8)2108353. doi: 10.1002/adma.202108353

    6. [6]

      Dahéron L, Dedryvère R, Martinez H, Ménétrier M, Denage C, Delmas C, Gonbeau D. Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS[J]. Chem. Mater, 2008,20(2):583-590. doi: 10.1021/cm702546s

    7. [7]

      Zhang J C, Liu Z D, Zeng C H, Luo J W, Deng Y D, Cui X Y, Chen Y N. High-voltage LiCoO2 cathodes for high-energy-density lithium-ion battery[J]. Rare Metals, 2022,41(12):3946-3956. doi: 10.1007/s12598-022-02070-6

    8. [8]

      Kong W J, Zhang J C, Wong D, Yang W Y, Yang J B, Schulz C, Liu X F. Tailoring Co3d and O2p band centers to inhibit oxygen escape for stable 4.6 V LiCoO2 cathodes[J]. Angew. Chem. Int. Ed., 2021,60(52):27102-27112. doi: 10.1002/anie.202112508

    9. [9]

      Qin N, Gan Q M, Zhuang Z F, Wang Y F, Li Y Z, Li Z Q, Iftikhar H, Zeng C, Liu G Y, Bai Y F, Zhang K L, Lu Z G. Hierarchical doping engineering with active/inert dual elements stabilizes LiCoO2 to 4.6 V[J]. Adv. Energy Mater., 2022,12(31)2201549. doi: 10.1002/aenm.202201549

    10. [10]

      Lee Y, Kim T Y, Kim D W, Lee J K, Choi W. Coating of spinel LiNi0.5Mn1.5O4 cathodes with SnO2 by an electron cyclotron resonance metal-organic chemical vapor deposition method for high-voltage applications in lithium ion batteries[J]. J. Electroanal. Chem., 2015,736:16-21. doi: 10.1016/j.jelechem.2014.10.022

    11. [11]

      Gauthier M, Carney T J, Grimaud A, Giordano L, Pour N, Chang H H, Fenning D P, Lux S F, Paschos O, Bauer C, Maglia F, Lupart S, Lamp P, Shao-Horn Y. Electrode-electrolyte interface in Li-Ion batteries: Current understanding and new insights[J]. J. Phys. Chem. Lett., 2015,6(22):4653-4672. doi: 10.1021/acs.jpclett.5b01727

    12. [12]

      Liu J, Xiao B W, Banis M N, Li R Y, Sham T K, Sun X L. Atomic layer deposition of amorphous iron phosphates on carbon nanotubes as cathode materials for lithium-ion batteries[J]. Electrochim. Acta, 2015,162:275-281. doi: 10.1016/j.electacta.2014.12.158

    13. [13]

      Liu J X, Wang J Q, Ni Y X, Liu J D, Zhang Y D, Lu Y, Yan Z H, Zhang K, Zhao Q, Cheng F Y, Chen J. Tuning interphase chemistry to stabilize high-voltage LiCoO2 cathode material via spinel coating[J]. Angew. Chem. Int. Ed., 2022,61(35)e202207000. doi: 10.1002/anie.202207000

    14. [14]

      E Z T, Guo H J, Wang J X, Wang Z X, Li X H, Yan G C. A new surface phase of Al2Ti7O15 to enhance the electronic conductivity and interfacial stability of LiCoO2 cathode materials[J]. Appl. Surf. Sci., 2022,606154776. doi: 10.1016/j.apsusc.2022.154776

    15. [15]

      Bae J G, Lee J H, Kim M S, Kim B G, Lee H J, Lee J H. Structural evolution of Mg-doped single-crystal LiCoO2 cathodes: Importance of morphology and Mg-doping sites[J]. ACS Appl. Mater. Interfaces, 2023,15(6):7939-7948. doi: 10.1021/acsami.2c17993

    16. [16]

      Huang Y Y, Zhu Y C, Fu H Y, Ou M Y, Hu C C, Yu S J, Hu Z W, Chen C T, Jiang G, Gu H K, Lin H, Luo W, Huang Y H. Mg-pillared LiCoO2: Towards stable cycling at 4.6 V[J]. Angew. Chem. Int. Ed., 2021,60(9):4682-4688. doi: 10.1002/anie.202014226

    17. [17]

      Shi B Z, Hu S Z, Feng J L, Zhou Y A, Liu J, Zhang J L, Li W. Titanium and fluorine co-modification strengthens high-voltage electrochemical performance of LiCoO2[J]. J. Alloy. Compd., 2022,909164787. doi: 10.1016/j.jallcom.2022.164787

    18. [18]

      Fu A, Zhang Z F, Lin J D, Zou Y, Qin C D, Xu C J, Yan P F, Zhou K, Hao J L, Yang X R, Cheng Y, Wu D Y, Yang Y, Wang M S, Zheng J M. Highly stable operation of LiCoO2 at cut-off ≥ 4.6 V enabled by synergistic structural and interfacial manipulation[J]. Energy Storage Mater., 2022,46:406-416. doi: 10.1016/j.ensm.2022.01.033

    19. [19]

      Wang Y, Zhang Q H, Xue Z C, Yang L F, Wang J Y, Meng F Q, Li Q H, Pan H Y, Zhang J N, Jiang Z, Yang W L, Yu X Q, Gu L, Li H. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances[J]. Adv. Energy Mater., 2020,10(28)2001413. doi: 10.1002/aenm.202001413

    20. [20]

      Wei J, Ji Y X, Liang D, Chen B, Jiang C, Li X T. Anticorrosive nanosized LiF thin film coating for achieving long-cycling stability of LiCoO2 at high voltages[J]. Ceram. Int., 2022,48(7):10288-10298. doi: 10.1016/j.ceramint.2021.12.247

    21. [21]

      Ye B, Cai M Z, Xie M, Dong H, Dong W J, Huang F Q. Constructing robust cathode/electrolyte interphase for ultrastable 4.6 V LiCoO2 under -25 ℃[J]. ACS Appl. Mater. Interfaces, 2022,14(17):19561-19568. doi: 10.1021/acsami.2c02818

    22. [22]

      Zhang F, Lou S F, Li S, Yu Z J, Liu Q S, Dai A, Cao C T, Toney M F, Ge M Y, Xiao X H, Lee W K, Yao Y D, Deng J J, Liu T C, Tang Y P, Yin G P, Lu J, Su D, Wang J J. Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage[J]. Nat. Commun., 2020,11(1)3050. doi: 10.1038/s41467-020-16824-2

    23. [23]

      Wang H L, Yang Y, Liang Y Y, Robinson J T, Li Y G, Jackson A, Cui Y, Dai H J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Lett., 2011,11(7):2644-2647. doi: 10.1021/nl200658a

    24. [24]

      Luo W B, Zheng B L, He J. Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material after surface modification with graphene oxide[J]. J. Alloy. Compd., 2017,705:405-412. doi: 10.1016/j.jallcom.2017.02.114

    25. [25]

      Li J Y, Lin C, Weng M Y, Qiu Y, Chen P H, Yang K, Huang W Y, Hong Y X, Li J, Zhang M J, Dong C, Zhao W G, Xu Z, Wang X, Xu K, Sun J L, Pan F. Structural origin of the high-voltage instability of lithium cobalt oxide[J]. Nat. Nanotechnol., 2021,16(5):599-605. doi: 10.1038/s41565-021-00855-x

    26. [26]

      Guo H, Min Z J, Hao Y, Wang X, Fan J C, Shi P H, Min Y L, Xu Q J. Sustainable recycling of LiCoO2 cathode scrap on the basis of successive peroxymonosulfate activation and recovery of valuable metals[J]. Sci. Total Environ., 2021,759143478. doi: 10.1016/j.scitotenv.2020.143478

    27. [27]

      Luo K, Roberts M R, Hao R, Guerrini N, Pickup D M, Liu Y S, Edströ m K, Guo J H, Chadwick A V, Duda L C, Bruce P G. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nat. Chem., 2016,8(7):684-691. doi: 10.1038/nchem.2471

    28. [28]

      de Dompablo M E A Y, Amador U, Tarascon J M. A computational investigation on fluorinated-polyanionic compounds as positive electrode for lithium batteries[J]. J. Power Sources, 2007,174(2):1251-1257. doi: 10.1016/j.jpowsour.2007.06.178

    29. [29]

      Jiang Y Y, Qin C D, Yan P F, Sui M L. Origins of capacity and voltage fading of LiCoO2 upon high voltage cycling[J]. J. Mater. Chem. A, 2019,7(36):20824-20831. doi: 10.1039/C9TA06579B

    30. [30]

      Li Q, Wu K, Chen M M, Lee Y L, Chen D F, Wu M M, Li F Q, Xiao X L, Hu Z B. Designing high-voltage and high-rate Li1-xNaxCoO2 by enlarging Li layer spacing[J]. Electrochim. Acta, 2018,273:145-153. doi: 10.1016/j.electacta.2018.04.043

    31. [31]

      Manthiram A. A reflection on lithium-ion battery cathode chemistry[J]. Nat. Commun., 2020,11(1)1550. doi: 10.1038/s41467-020-15355-0

    32. [32]

      Lei H, Tan S Z, Ma L J, Liu Y Z, Liang Y Y, Javed M S, Wang Z L, Zhu Z L, Mai W J. Strongly coupled NiCo2O4 nanocrystal/MXene hybrid through in situ Ni/Co-F bonds for efficient wearable Zn-Air batteries[J]. ACS Appl. Mater. Interfaces, 2020,12(40):44639-44647. doi: 10.1021/acsami.0c11185

    33. [33]

      He Y, Ding X L, Cheng T, Cheng H Y, Liu M, Feng Z J, Huang Y J, Ge M H, Lyu Y C, Guo B K. A bi-functional strategy involving surface coating and subsurface gradient co-doping for enhanced cycle stability of LiCoO2 at 4.6 V[J]. J. Energy Chem., 2023,77:553-560. doi: 10.1016/j.jechem.2022.11.040

    34. [34]

      Wang M C, Feng X Y, Xiang H F, Feng Y Z, Qin C D, Yan P F, Yu Y. A novel protective strategy on high-voltage LiCoO2 cathode for fast charging applications: Li1.6Mg1.6Sn2.8O8 double layer structure via SnO2 surface modification[J]. Small Methods, 2019,3(11)1900355. doi: 10.1002/smtd.201900355

    35. [35]

      Zhang F C, Dong J Y, Yi D, Xia J, Lu Z J, Yang Y, Wang X. Archimedean polyhedron LiCoO2 for ultrafast rechargeable Li-ion batteries[J]. Chem. Eng. J., 2021,423130122. doi: 10.1016/j.cej.2021.130122

    36. [36]

      Tian T, Zhang T W, Yin Y C, Tan Y H, Song Y H, Lu L L, Yao H B. Blow-spinning enabled precise doping and coating for improving high-voltage lithium cobalt oxide cathode performance[J]. Nano Lett., 2020,20(1):677-685. doi: 10.1021/acs.nanolett.9b04486

    37. [37]

      LIANG X M, SHEN Y C, WEI D, GUO Q, GAO Z. Analysis of output characteristics of aluminum-air battery based on DC internal resistance and AC impedance characteristics[J]. CIESC Journal, 2021,72(8):4361-4370.  

    38. [38]

      HE Z C, YANG G, LU L G, WU H S. Battery DC internal resistance test method based on the constant current external characteristics and SOC[J]. Journal of Tsinghua University (Science and Technology), 2015,55(5):532-537.  

  • 加载中
    1. [1]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    13. [13]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    14. [14]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    17. [17]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    19. [19]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    20. [20]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

Metrics
  • PDF Downloads(0)
  • Abstract views(190)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return