Citation: Jiahong ZHENG, Jiajun SHEN, Xin BAI. Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253 shu

Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites

  • Corresponding author: Jiahong ZHENG, jhzheng@chd.edu.cn
  • Received Date: 3 July 2023
    Revised Date: 15 December 2023

Figures(7)

  • Using nickel foam as a substrate, NiMoO4 active materials with sheet-like structures were produced in situ, and later NiMoO4/NiMoS4 composites were prepared by vulcanization. On the morphology and electrochemical characteristics of the materials, the impacts of hydrothermal time and thiourea addition were examined. Electrochemical experiments revealed that the NiMoO4/NiMoS4 electrode could release a specific capacitance of 1 560.7 F·g-1 at a current density of 1 A·g-1, and the capacity remained at 76.7% of the initial specific capacitance after 2 000 cycles at a current density of 40 A·g-1. The asymmetric supercapacitors (ASC) device assembled with NiMoO4/NiMoS4 electrode material and activated carbon (AC) as positive and negative electrodes respectively can provide 29.0 Wh·kg-1 energy density at a power density of 400 W·kg-1.
  • 加载中
    1. [1]

      Li C, Balamurugan J, Kim N H, Lee J H. Hierarchical Zn-Co-S nanowires as advanced electrodes for all solid state asymmetric supercapacitors[J]. Adv. Energy Mater., 2018,8(8)1702014. doi: 10.1002/aenm.201702014

    2. [2]

      Lee G, Na W, Kim J, Lee S, Jang J. Improved electrochemical performances of MOF-derived Ni-Co layered double hydroxide complexes using distinctive hollow-in-hollow structures[J]. J. Mater. Chem. A, 2019,7(29):17637-17647. doi: 10.1039/C9TA05138D

    3. [3]

      Liu W J, Zhu F F, Liu Y, Shi W D. Regular hierarchical CoP@Ni(OH)2·0.75H2O core-shell nanosheet arrays on carbon cloth for high-performance supercapacitors[J]. J. Colloid. Interface Sci., 2020,578:1-9. doi: 10.1016/j.jcis.2020.05.107

    4. [4]

      Liu H J, Zhu J C, Li Z, Shi Z C, Zhu J L, Mei H. Fe2O3/N doped rGO anode hybridized with NiCo LDH/Co(OH)2 cathode for battery-like supercapacitor[J]. Chem. Eng. J., 2021,403126325. doi: 10.1016/j.cej.2020.126325

    5. [5]

      Gu J L, Sun L, Zhang Y X, Zhang Q Y, Li X W, Si H C, Shi Y, Sun C, Gong Y, Zhang Y H. MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors[J]. Chem. Eng. J., 2020,385123454. doi: 10.1016/j.cej.2019.123454

    6. [6]

      Shinde P A, Jun S C. Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage[J]. Chem. Sus. Chem., 2020,13(1):11-38. doi: 10.1002/cssc.201902071

    7. [7]

      Joseph A, Thomas T. Recent advances and prospects of metal oxynitrides for supercapacitor[J]. Prog. Solid State Chem., 2022,68100381. doi: 10.1016/j.progsolidstchem.2022.100381

    8. [8]

      Yu L, Xia B Y, Wang X, Lou X W. General formation of M-MoS3 (M=Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution[J]. Adv. Mater., 2016,28(1):92-97. doi: 10.1002/adma.201504024

    9. [9]

      Li J, Zou Y J, Jin L, Xu F, Sun L X, Xiang C L. Polydopamine-assisted NiMoO4 nanorods anchored on graphene as an electrode material for supercapacitor applications[J]. J. Energy Storage, 2022,50104639. doi: 10.1016/j.est.2022.104639

    10. [10]

      Yu L, Zhang L, Wu H B, Lou X W. Formation of NixCo3-xS4 hollow nanoprisms with enhanced pseudocapacitive properties[J]. Angew. Chem. Int. Ed., 2014,53(14):3711-3714. doi: 10.1002/anie.201400226

    11. [11]

      Theerthagiri J, Senthil R A, Nithyadharseni P, Lee S J, Durai G, Kuppusami P, Madhavan J, Choi M Y. Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage[J]. Ceram. Int., 2020,46(10):14317-14345. doi: 10.1016/j.ceramint.2020.02.270

    12. [12]

      CAI D, ZHANG Z Y, WU Z H, ZHANG X L, ZHAO R D, XIANG J. Study on preparation and electrochemical performance of NiMoS4@ MoS3 composite electrode[J]. Rare Metals and Cemented Carbides, 2023,51(4):47-51.  

    13. [13]

      Ikkurthi K D, Rao S S, Jagadeesh M, Reddy A E, Anitha T, Kim H J. Synthesis of nanostructured metal sulfides via a hydrothermal method and their use as an electrode material for supercapacitors[J]. New J. Chem., 2018,42:19183-19192. doi: 10.1039/C8NJ04358B

    14. [14]

      Zheng X T, Gu Z X, Hu Q Q, Geng B Y, Zhang X J. Ultrathin porous nickel-cobalt hydroxide nanosheets for high-performance supercapacitor electrodes[J]. RSC Adv., 2015,5(22):17007-17013. doi: 10.1039/C5RA01294E

    15. [15]

      Chen J S, Guan C, Gui Y, Blackwood D J. Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density[J]. ACS Appl. Mater. Interfaces, 2017,9(1):496-504. doi: 10.1021/acsami.6b14746

    16. [16]

      Wang J, Chao D, Liu J, Li L L, Lai L F, Lin J Y, Shen Z X. Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage[J]. Nano Energy, 2014,7:151-160. doi: 10.1016/j.nanoen.2014.04.019

    17. [17]

      Gao M J, Le K, Xu D M, Wang Z, Wang F L, Liu W, Yu H J, Liu J R, Chen C Z. Controlled sulfidation towards achieving core-shell 1D-NiMoO4@2D-NiMoS4 architecture for high-performance asymmetric supercapacitor[J]. J. Alloy. Compd., 2019,804:27-34. doi: 10.1016/j.jallcom.2019.07.009

    18. [18]

      Huang X, Zhang Z G, Li H, Zhao Y Y, Wang H X, Ma T L. Novel fabrication of Ni3S2/MnS composite as high performance supercapacitor electrode[J]. J. Alloy. Compd., 2017,722:662-668. doi: 10.1016/j.jallcom.2017.06.166

    19. [19]

      Cheng C, Zou Y J, Xu F, Xiang C L, Sun L X. In situ growth of nickel-cobalt metal organic frameworks guided by a nickel-molybdenum layered double hydroxide with two-dimensional nanosheets forming flower-like struc-tures for high-performance supercapacitors[J]. Nanomaterials, 2023,13(3)581. doi: 10.3390/nano13030581

    20. [20]

      Yang X J, Sun H M, Zan P, Zhao L J, Lian J S. Growth of vertically aligned Co3S4/CoMo2S4 ultrathin nanosheets on reduced graphene oxide as a high-performance supercapacitor electrode[J]. J. Mater. Chem. A, 2016,4(48):18857-18867. doi: 10.1039/C6TA07898B

    21. [21]

      Kumar S, Saeed G, Kim N H, Lee J H. Hierarchical nanohoneycomb-like CoMoO4-MnO2 core-shell and Fe2O3 nanosheet arrays on 3D graphene foam with excellent supercapacitive performance[J]. J. Mater. Chem. A, 2018,6(16):7182-7193. doi: 10.1039/C8TA00889B

    22. [22]

      Abuelftooh A M, Tantawy N S, Mahmouad S S, Shoeib M A, Mohamed S G. High specific energy supercapacitor electrode prepared from MnS/Ni3S2 composite grown on nickel foam[J]. New J. Chem., 2021,45(39):18641-18650. doi: 10.1039/D1NJ03930J

    23. [23]

      Hou L R, Shi Y Y, Zhu S Q, Rehan M, Pang G, Zhang X G, Yuan C Z. Hollow mesoporous hetero-NiCo2S4/Co9S8 submicro-spindles: Unusual formation and excellent pseudocapacitance towards hybrid supercapacitors[J]. J. Mater. Chem. A, 2017,5(1):133-144. doi: 10.1039/C6TA05788H

    24. [24]

      Hong X P, Kim J, Shi S F, Zhang Y, Jin C H, Sun Y H, Tongay S, Wu J Q, Zhang Y F, Wang F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J]. Nat. Nanotechnol., 2014,9(9):682-686. doi: 10.1038/nnano.2014.167

    25. [25]

      Zhang X, Luo J S, Tang P Y, Ye X L, Peng X X, Tang H L, Sun S G, Fransaer J. A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: A supercapacitor case with superior rate performance and high mass loading[J]. Nano Energy, 2017,31:311-321. doi: 10.1016/j.nanoen.2016.11.024

    26. [26]

      Bredar A R C, Chown A L, Burton A R, Farnum B H. Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications[J]. ACS Appl. Energy Mater., 2020,3(1):66-98. doi: 10.1021/acsaem.9b01965

    27. [27]

      Rajesh M, Raj C J, Manikandan R, Kim B C, Park S Y, Yu K H. A high performance PEDOT/PEDOT symmetric supercapacitor by facile in-situ hydrothermal polymerization of PEDOT nanostructures on flexible carbon fibre cloth electrodes[J]. Mater. Today Energy, 2017,6:96-104. doi: 10.1016/j.mtener.2017.09.003

    28. [28]

      Feng X, Ning J, Wang D, Zhang J C, Xia M Y, Wang Y, Hao Y. Heterostructure arrays of NiMoO4 nanoflakes on N-doping of graphene for high performance asymmetric supercapacitors[J]. J. Alloy. Compd., 2020,816152625. doi: 10.1016/j.jallcom.2019.152625

    29. [29]

      Ghosh D, Giri S, Das C K. Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4·nH2O nanorods[J]. Nanoscale, 2013,5(21):10428-10437. doi: 10.1039/c3nr02444j

    30. [30]

      Li M, Yang H X, Wang Y H, Wang L W, Chu P K. Core-shell CoMoO4@Ni(OH)2 on ordered macro-porous electrode plate for high-performance supercapacitor[J]. Electrochim. Acta, 2018,283:538-547. doi: 10.1016/j.electacta.2018.06.043

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    12. [12]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(1)
  • Abstract views(150)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return