Citation: Jiahong ZHENG, Jiajun SHEN, Xin BAI. Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253 shu

Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites

  • Corresponding author: Jiahong ZHENG, jhzheng@chd.edu.cn
  • Received Date: 3 July 2023
    Revised Date: 15 December 2023

Figures(7)

  • Using nickel foam as a substrate, NiMoO4 active materials with sheet-like structures were produced in situ, and later NiMoO4/NiMoS4 composites were prepared by vulcanization. On the morphology and electrochemical characteristics of the materials, the impacts of hydrothermal time and thiourea addition were examined. Electrochemical experiments revealed that the NiMoO4/NiMoS4 electrode could release a specific capacitance of 1 560.7 F·g-1 at a current density of 1 A·g-1, and the capacity remained at 76.7% of the initial specific capacitance after 2 000 cycles at a current density of 40 A·g-1. The asymmetric supercapacitors (ASC) device assembled with NiMoO4/NiMoS4 electrode material and activated carbon (AC) as positive and negative electrodes respectively can provide 29.0 Wh·kg-1 energy density at a power density of 400 W·kg-1.
  • 加载中
    1. [1]

      Li C, Balamurugan J, Kim N H, Lee J H. Hierarchical Zn-Co-S nanowires as advanced electrodes for all solid state asymmetric supercapacitors[J]. Adv. Energy Mater., 2018,8(8)1702014. doi: 10.1002/aenm.201702014

    2. [2]

      Lee G, Na W, Kim J, Lee S, Jang J. Improved electrochemical performances of MOF-derived Ni-Co layered double hydroxide complexes using distinctive hollow-in-hollow structures[J]. J. Mater. Chem. A, 2019,7(29):17637-17647. doi: 10.1039/C9TA05138D

    3. [3]

      Liu W J, Zhu F F, Liu Y, Shi W D. Regular hierarchical CoP@Ni(OH)2·0.75H2O core-shell nanosheet arrays on carbon cloth for high-performance supercapacitors[J]. J. Colloid. Interface Sci., 2020,578:1-9. doi: 10.1016/j.jcis.2020.05.107

    4. [4]

      Liu H J, Zhu J C, Li Z, Shi Z C, Zhu J L, Mei H. Fe2O3/N doped rGO anode hybridized with NiCo LDH/Co(OH)2 cathode for battery-like supercapacitor[J]. Chem. Eng. J., 2021,403126325. doi: 10.1016/j.cej.2020.126325

    5. [5]

      Gu J L, Sun L, Zhang Y X, Zhang Q Y, Li X W, Si H C, Shi Y, Sun C, Gong Y, Zhang Y H. MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors[J]. Chem. Eng. J., 2020,385123454. doi: 10.1016/j.cej.2019.123454

    6. [6]

      Shinde P A, Jun S C. Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage[J]. Chem. Sus. Chem., 2020,13(1):11-38. doi: 10.1002/cssc.201902071

    7. [7]

      Joseph A, Thomas T. Recent advances and prospects of metal oxynitrides for supercapacitor[J]. Prog. Solid State Chem., 2022,68100381. doi: 10.1016/j.progsolidstchem.2022.100381

    8. [8]

      Yu L, Xia B Y, Wang X, Lou X W. General formation of M-MoS3 (M=Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution[J]. Adv. Mater., 2016,28(1):92-97. doi: 10.1002/adma.201504024

    9. [9]

      Li J, Zou Y J, Jin L, Xu F, Sun L X, Xiang C L. Polydopamine-assisted NiMoO4 nanorods anchored on graphene as an electrode material for supercapacitor applications[J]. J. Energy Storage, 2022,50104639. doi: 10.1016/j.est.2022.104639

    10. [10]

      Yu L, Zhang L, Wu H B, Lou X W. Formation of NixCo3-xS4 hollow nanoprisms with enhanced pseudocapacitive properties[J]. Angew. Chem. Int. Ed., 2014,53(14):3711-3714. doi: 10.1002/anie.201400226

    11. [11]

      Theerthagiri J, Senthil R A, Nithyadharseni P, Lee S J, Durai G, Kuppusami P, Madhavan J, Choi M Y. Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage[J]. Ceram. Int., 2020,46(10):14317-14345. doi: 10.1016/j.ceramint.2020.02.270

    12. [12]

      CAI D, ZHANG Z Y, WU Z H, ZHANG X L, ZHAO R D, XIANG J. Study on preparation and electrochemical performance of NiMoS4@ MoS3 composite electrode[J]. Rare Metals and Cemented Carbides, 2023,51(4):47-51.  

    13. [13]

      Ikkurthi K D, Rao S S, Jagadeesh M, Reddy A E, Anitha T, Kim H J. Synthesis of nanostructured metal sulfides via a hydrothermal method and their use as an electrode material for supercapacitors[J]. New J. Chem., 2018,42:19183-19192. doi: 10.1039/C8NJ04358B

    14. [14]

      Zheng X T, Gu Z X, Hu Q Q, Geng B Y, Zhang X J. Ultrathin porous nickel-cobalt hydroxide nanosheets for high-performance supercapacitor electrodes[J]. RSC Adv., 2015,5(22):17007-17013. doi: 10.1039/C5RA01294E

    15. [15]

      Chen J S, Guan C, Gui Y, Blackwood D J. Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density[J]. ACS Appl. Mater. Interfaces, 2017,9(1):496-504. doi: 10.1021/acsami.6b14746

    16. [16]

      Wang J, Chao D, Liu J, Li L L, Lai L F, Lin J Y, Shen Z X. Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage[J]. Nano Energy, 2014,7:151-160. doi: 10.1016/j.nanoen.2014.04.019

    17. [17]

      Gao M J, Le K, Xu D M, Wang Z, Wang F L, Liu W, Yu H J, Liu J R, Chen C Z. Controlled sulfidation towards achieving core-shell 1D-NiMoO4@2D-NiMoS4 architecture for high-performance asymmetric supercapacitor[J]. J. Alloy. Compd., 2019,804:27-34. doi: 10.1016/j.jallcom.2019.07.009

    18. [18]

      Huang X, Zhang Z G, Li H, Zhao Y Y, Wang H X, Ma T L. Novel fabrication of Ni3S2/MnS composite as high performance supercapacitor electrode[J]. J. Alloy. Compd., 2017,722:662-668. doi: 10.1016/j.jallcom.2017.06.166

    19. [19]

      Cheng C, Zou Y J, Xu F, Xiang C L, Sun L X. In situ growth of nickel-cobalt metal organic frameworks guided by a nickel-molybdenum layered double hydroxide with two-dimensional nanosheets forming flower-like struc-tures for high-performance supercapacitors[J]. Nanomaterials, 2023,13(3)581. doi: 10.3390/nano13030581

    20. [20]

      Yang X J, Sun H M, Zan P, Zhao L J, Lian J S. Growth of vertically aligned Co3S4/CoMo2S4 ultrathin nanosheets on reduced graphene oxide as a high-performance supercapacitor electrode[J]. J. Mater. Chem. A, 2016,4(48):18857-18867. doi: 10.1039/C6TA07898B

    21. [21]

      Kumar S, Saeed G, Kim N H, Lee J H. Hierarchical nanohoneycomb-like CoMoO4-MnO2 core-shell and Fe2O3 nanosheet arrays on 3D graphene foam with excellent supercapacitive performance[J]. J. Mater. Chem. A, 2018,6(16):7182-7193. doi: 10.1039/C8TA00889B

    22. [22]

      Abuelftooh A M, Tantawy N S, Mahmouad S S, Shoeib M A, Mohamed S G. High specific energy supercapacitor electrode prepared from MnS/Ni3S2 composite grown on nickel foam[J]. New J. Chem., 2021,45(39):18641-18650. doi: 10.1039/D1NJ03930J

    23. [23]

      Hou L R, Shi Y Y, Zhu S Q, Rehan M, Pang G, Zhang X G, Yuan C Z. Hollow mesoporous hetero-NiCo2S4/Co9S8 submicro-spindles: Unusual formation and excellent pseudocapacitance towards hybrid supercapacitors[J]. J. Mater. Chem. A, 2017,5(1):133-144. doi: 10.1039/C6TA05788H

    24. [24]

      Hong X P, Kim J, Shi S F, Zhang Y, Jin C H, Sun Y H, Tongay S, Wu J Q, Zhang Y F, Wang F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J]. Nat. Nanotechnol., 2014,9(9):682-686. doi: 10.1038/nnano.2014.167

    25. [25]

      Zhang X, Luo J S, Tang P Y, Ye X L, Peng X X, Tang H L, Sun S G, Fransaer J. A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: A supercapacitor case with superior rate performance and high mass loading[J]. Nano Energy, 2017,31:311-321. doi: 10.1016/j.nanoen.2016.11.024

    26. [26]

      Bredar A R C, Chown A L, Burton A R, Farnum B H. Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications[J]. ACS Appl. Energy Mater., 2020,3(1):66-98. doi: 10.1021/acsaem.9b01965

    27. [27]

      Rajesh M, Raj C J, Manikandan R, Kim B C, Park S Y, Yu K H. A high performance PEDOT/PEDOT symmetric supercapacitor by facile in-situ hydrothermal polymerization of PEDOT nanostructures on flexible carbon fibre cloth electrodes[J]. Mater. Today Energy, 2017,6:96-104. doi: 10.1016/j.mtener.2017.09.003

    28. [28]

      Feng X, Ning J, Wang D, Zhang J C, Xia M Y, Wang Y, Hao Y. Heterostructure arrays of NiMoO4 nanoflakes on N-doping of graphene for high performance asymmetric supercapacitors[J]. J. Alloy. Compd., 2020,816152625. doi: 10.1016/j.jallcom.2019.152625

    29. [29]

      Ghosh D, Giri S, Das C K. Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4·nH2O nanorods[J]. Nanoscale, 2013,5(21):10428-10437. doi: 10.1039/c3nr02444j

    30. [30]

      Li M, Yang H X, Wang Y H, Wang L W, Chu P K. Core-shell CoMoO4@Ni(OH)2 on ordered macro-porous electrode plate for high-performance supercapacitor[J]. Electrochim. Acta, 2018,283:538-547. doi: 10.1016/j.electacta.2018.06.043

  • 加载中
    1. [1]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    12. [12]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    13. [13]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    14. [14]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    15. [15]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    16. [16]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(21)
  • Abstract views(1069)
  • HTML views(403)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return