Citation: Yuanchao LI, Weifeng HUANG, Pengchao LIANG, Zifang ZHAO, Baoyan XING, Dongliang YAN, Li YANG, Songlin WANG. Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252 shu

Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites

Figures(10)

  • LiMn0.8Fe0.2PO4/C composite was synthesized using sucrose and graphite as heterogeneous carbon sources through a solid-state method assisted by aqueous rheological phase. The effect of different addition methods of graphite on electrochemical performances was studied. The LiMn0.8Fe0.2PO4/C composite was characterized by the X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that different graphite coating processes had obvious effects on the structure and electrochemical properties of the materials. The sample, which the graphite was added after the precursor was calcined, showed a high purity and uniform elliptic morphology. And its specific discharge capacity was 149 mAh·g-1 (87% of the theoretical specific capacity) at 0.1C. The specific discharge capacity was 133 mAh·g-1 at 5C. After 300 cycles at 2C, its capacity was maintained at 127 mAh·g-1, whose decay rate was 1.9%, showing excellent electrochemical performances.
  • 加载中
    1. [1]

      Shi J J, Wang Z G, Fu Y Q. Density functional theory study of lithium diffusion at the interface between olivine-type LiFePO4 and LiMnPO4[J]. J. Phys. D-Appl. Phys., 2016,49(50):505601-505606. doi: 10.1088/0022-3727/49/50/505601

    2. [2]

      Gnewuch S, Rodriguez E E. Distinguishing the intrinsic antiferromagnetism in polycrystalline LiCoPO4 and LiMnPO4 olivines[J]. Inorg. Chem., 2020,59(9):5883-5895. doi: 10.1021/acs.inorgchem.9b03545

    3. [3]

      SHANG W L, KONG L Y, CHEN L Z, HUANG S Z, TANG Y, REN C. Preparation and electrochemical performance of LiMn0.6Fe0.4PO4/C with high energy density[J]. Chinese J. Inorg. Chem., 2019,35(3):485-492.  

    4. [4]

      WU X Y, RUAN D S, MAO L L, FENG M H, LI B. Mn doped LiFePO4 cathode material: Solvothermal preparation and electrochemical performance[J]. Chinese J. Inorg. Chem., 2021,37(8):1399-1406.  

    5. [5]

      Budumuru A K, Viji M, Jena A, Nanda B R K, Sudakar C. Mn substitution controlled Li-diffusion in single crystalline nanotubular LiFePO4 high rate-capability cathodes: Experimental and theoretical studies[J]. J. Power Sources, 2018,406:50-62. doi: 10.1016/j.jpowsour.2018.10.020

    6. [6]

      Wang C, Li S H, Han Y Y, Lu Z D. Assembly of LiMnPO4 nanoplates into microclusters as a high-performance cathode in lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2017,9(33):27618-27624. doi: 10.1021/acsami.7b05868

    7. [7]

      Lei Z H, Wang J L, Yang J, Nuli Y N, Ma Z F. Nano-/microhierarchical-structured LiMn0.85Fe0.15PO4 cathode material for advanced lithium ion battery[J]. ACS Appl. Mater. Interfaces, 2018,10(50):43552-43560. doi: 10.1021/acsami.7b04193

    8. [8]

      Xie Y, Yu H T, Yi T F, Zhu Y R. Understanding the thermal and mechanical stabilities of olivine-type LiMPO4 (M=Fe, Mn) as cathode materials for rechargeable lithium batteries from first principles[J]. ACS Appl. Mater. Interfaces, 2014,6(6):4033-4042. doi: 10.1021/am4054833

    9. [9]

      Kellerman D, Medvedeva N, Mukhina N, Semenova A, Baklanova I, Perelyaeva L, Gorshkov V. Vanadium doping of LiMnPO4: Vibrational spectroscopy and first-principle studies[J]. Chem. Phys. Lett., 2014,591:21-24. doi: 10.1016/j.cplett.2013.10.087

    10. [10]

      Li Z F, Ren X, Zheng Y, Tian W C, An L W, Sun J C, Ding R Q, Wen L Z, Liang G C. Effect of Ti doping on LiFePO4/C cathode material with enhanced low-temperature electrochemical performance[J]. Ionics, 2020,26(4):1599-1609. doi: 10.1007/s11581-019-03408-4

    11. [11]

      Jung Y H, Park W B, Pyo M, Sohn K S, Ahn D. A multi-element doping design for a high-performance LiMnPO4 cathode via metaheuristic computation[J]. J. Mater. Chem. A, 2017,5(19):8939-8945. doi: 10.1039/C6TA10228J

    12. [12]

      Wu K P, Yin S, Wang S, Zhu J L, Yao W T. Construction of submicron-sized LiFe0.4Mn0.6PO4/C enwrapped into graphene framework for advanced Li-storage[J]. Carbon, 2020,169:55-64. doi: 10.1016/j.carbon.2020.07.030

    13. [13]

      Zhang J, Luo S H, Ren Q X, Zhang D J, Qin Y. Tailoring the sodium doped LiMnPO4/C orthophosphate to nanoscale as a high-performance cathode for lithium ion battery[J]. Appl. Surf. Sci., 2020,530146628. doi: 10.1016/j.apsusc.2020.146628

    14. [14]

      Xu G, Yang Y R, Li L L, Li F, Wang J W, Bao L, Li X, Shen G, Han G R. Ethylene glycol (EG) solvothermal synthesis of flower-like LiMnPO4 nanostructures self-assembled with (010) nanobelts for Li-ion battery positive cathodes[J]. CrystEngComm, 2016,18(18):3282-3288. doi: 10.1039/C6CE00336B

    15. [15]

      Xu H, Zong J, Ding F, Lu Z W, Li W, Liu X J. Effects of Fe2+ ion doping on LiMnPO4 nanomaterial for lithium ion batteries[J]. RSC Adv., 2016,6(32):27164-27169. doi: 10.1039/C6RA02977A

    16. [16]

      Deng Y F, Yang C X, Zou K X, Qin X S, Zhao Z X, Chen G H. Recent advances of Mn-rich LiFe1-yMnyPO4 (0.5=y<1.0) cathode materials for high energy density lithium ion batteries. Adv[J]. Energy Mater., 2017,7(13)1601958. doi: 10.1002/aenm.201601958

    17. [17]

      Kim T H, Park H S, Lee M H, Lee S Y, Song H K. Restricted growth of LiMnPO4 nanoparticles evolved from a precursor seed[J]. J. Power Sources, 2012,210:1-6. doi: 10.1016/j.jpowsour.2012.02.078

    18. [18]

      Guo H, Wu C Y, Xie J, Zhang S C, Cao G S, Zhao X B. Controllable synthesis of high-performance LiMnPO4 nanocrystals by a facile one-spot solvothermal process[J]. J. Mater. Chem. A, 2014,2(27):10581-10588. doi: 10.1039/C4TA01365D

    19. [19]

      Wang Y, Wu C Y, Yang H, Duh J G. Rational design of a synthetic strategy, carburizing approach and pore-forming pattern to unlock the cycle reversibility and rate capability of micro-agglomerated LiMn0.8Fe0.2PO4 cathode materials[J]. J. Mater. Chem. A, 2018,6(22):10395-10403. doi: 10.1039/C8TA03418D

    20. [20]

      Yang L T, Xia Y G, Fan X, Qin L F, Qiu B, Liu Z P. Constructing durable carbon layer on LiMn08Fe0.2PO4 with superior long-term cycling performance for lithium-ion battery[J]. Electrochim. Acta, 2016,191:200-206. doi: 10.1016/j.electacta.2016.01.069

    21. [21]

      LUO D D, TIAN J H, ZHU X, WANG Z D, SHAN Z Q. Effect of carbon and graphene on performance of LiMnPO4 material[J]. Chinese J. Inorg. Chem., 2017,33(6):1000-1006.  

    22. [22]

      QIU G C, XIA B B, SUN H D, FANG G Q, LIU W W, LI D C, WEI J. Improvement of electrochemical properties of LiMn2O4 cathode material by LiMnPO4 coating via hydrothermal method[J]. Chinese J. Inorg. Chem., 2013,29(3):437-443.  

    23. [23]

      Li L G, Tu H F, Wang J, Wang M C, Li W F, Li X, Ye F M, Guan Q H, Zhu F Y, Zhang Y P, Hu Y Z, Yan C, Lin H Z, Liu M N. Electrocatalytic MOF-carbon bridged network accelerates Li+-solvents desolvation for high Li+ diffusion toward rapid sulfur redox kinetics[J]. Adv. Funct. Mater., 2023,332212499. doi: 10.1002/adfm.202212499

    24. [24]

      Li Y C, Xing B Y, Wang Z G, Zhang H S, Liu Y Y, Jiang J C, Yang S T, Li B J. Constructing a hierarchical LiMn0.8Fe0.2PO4/C cathode via Co-modification of Li3PO4 and graphite for high-performance lithium-ion batteries[J]. ACS Appl. Energy Mater., 2022,5:10983-10993. doi: 10.1021/acsaem.2c01634

    25. [25]

      Liu C L, Li Q L, Sun H Z, Wang Z, Gong W B, Cong S, Yao Y G, Zhao Z G. MOF-derived vertically stacked Mn2O3@C flakes for fiber-shaped zinc-ion batteries[J]. J. Mater. Chem. A, 2020,8(45):24031-24039. doi: 10.1039/D0TA09212F

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    6. [6]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    10. [10]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    13. [13]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    18. [18]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

Metrics
  • PDF Downloads(2)
  • Abstract views(381)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return