Citation: Hanmei HUANG, Shiyong WEI, Xiaolong CHEN, Zhongkui XIE, Wenjun XIANG, Rui WANG. Effect of external electric field on the electronic structure of ferrite using the density functional theory simulation[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 361-372. doi: 10.11862/CJIC.20230230 shu

Effect of external electric field on the electronic structure of ferrite using the density functional theory simulation

  • Corresponding author: Rui WANG, wangrui20190819@163.com
  • Received Date: 14 June 2023
    Revised Date: 22 December 2023

Figures(11)

  • In this work, the electronic structure of three ferrites, Fe2O3 (hematite), Fe3O4 (magnetite), and α-FeOOH (goethite), have been calculated with the density functional theory (DFT) under external electric field (E) for investigating the effect of the external electric field on the electronic structure of ferrites. It was found that the external electric field could continue to decrease the band gap by 0.36, 0.12, and 0.34 eV under an E of 0.01 V·nm-1 through signally changing the valance band maximum. When it increased to 0.1 V·nm-1, Fe2O3 would be broken down by the external electronic field, causing a breaking of the Fe—O bond and a delocalization among Fe atoms along the E direction. At the same time, Fe3O4 and α-FeOOH could maintain their crystal with some effect on the localization and energy of the electron. In addition, it showed a degeneration of the valance electron for three ferrites under the external electric field. For Fe2O3, the Hirshfeld charge of the Fe atoms was reduced while improved for the O atoms along with an increase in the external electronic field. Interestingly, the Hirshfeld charge for both Fe atoms with the form charge of +2 and +3 in Fe3O4 was not influenced by the external electronic field. As for α-FeOOH, the unit of FeO6 located on the edge of the chain was more sensitive than that of the body FeO6 in the chain towards the external electronic field. Meanwhile, the H atom of the terminated -OH in α-FeOOH exhibited a disproportionated response on the Hirshfeld charge under the external electronic field. With the spin of electrons in ferrites, increasing the external electronic field would improve the spin of electrons in Fe3O4 while reducing it in α-FeOOH among an E of 0.001-0.1 V·nm-1.
  • 加载中
    1. [1]

      Parkinson G S. Iron oxide surfaces[J]. Surf. Sci. Rep., 2016,71:272-365. doi: 10.1016/j.surfrep.2016.02.001

    2. [2]

      Luo H W, Zeng Y F, He D Q, Pan X L. Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review[J]. Chem. Eng. J., 2021,407127191. doi: 10.1016/j.cej.2020.127191

    3. [3]

      Zhu M H, Wachs I E. Iron-based catalysts for the high-temperature water gas shift (HT-WGS) reaction: A review[J]. ACS Catal., 2016,6:722-732. doi: 10.1021/acscatal.5b02594

    4. [4]

      WU S S, MA B K, JIA Q M, WANG Y M, DAI W L, ZHANG S Y. Synthesis and photocatalytic properties of magnetically separated Ni-Zn ferrite-graphene nanocomposite[J]. Chinese J. Inorg. Chem., 2016,32(4):561-566.  

    5. [5]

      Guo S L, Yi W T, Li Z Z. Effect of magnetic nanoparticles on magnetic field homogeneity[J]. Chin. Phys. B, 2023,32050203. doi: 10.1088/1674-1056/acaa26

    6. [6]

      Ling D, Lee N, Hyeon T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications[J]. Accounts Chem. Res., 2015,48:1276-1285. doi: 10.1021/acs.accounts.5b00038

    7. [7]

      Yu M Q, Budiyanto E, Tüysüz H. Principles of water electrolysis and recent progress in Cobalt-, Nickel-, and Iron-based oxides for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2022,61e202103824. doi: 10.1002/anie.202103824

    8. [8]

      Weng H, Yang Y, Zhang C, Cheng M, Wang W J, Song B, Luo H Z, Qin D Y, Huang C, Qin F Z, Li K T. Insight into FeOOH-mediated advanced oxidation processes for the treatment of organic polluted wastewater[J]. Chem. Eng. J., 2023,453139812. doi: 10.1016/j.cej.2022.139812

    9. [9]

      Carraro G, Sugrañez R, Maccato C, Gasparotto A, Barreca D, Sada C, Cruz-Yusta M, Sánchez L. Nanostructured iron(Ⅲ) oxides: From design to gas- and liquid-phase photo-catalytic applications[J]. Thin Solid Films, 2014,564:121-127. doi: 10.1016/j.tsf.2014.05.048

    10. [10]

      Li Z, Sheng J Y, Wang Y, Xu Y M. Enhanced photocatalytic activity and stability of alumina supported hematite for azo-dye degradation in aerated aqueous suspension[J]. J. Hazard. Mater., 2013,254-255:18-25. doi: 10.1016/j.jhazmat.2013.03.055

    11. [11]

      Kumar Y, Kumar R, Raizada P, Khan A A P, Singh A, Le Q V, Nguyen V H, Selvasembian R, Thakur S, Singh P. Current status of hematite (α-Fe2O3) based Z-scheme photocatalytic systems for environmental and energy applications[J]. J. Environ. Chem. Eng., 2022,10107427. doi: 10.1016/j.jece.2022.107427

    12. [12]

      Ide Y, Hattori H, Ogo S, Sadakane M, Sano T. Highly efficient and selective sunlight-induced photocatalytic oxidation of cyclohexane on an eco-catalyst under a CO2 atmosphere[J]. Green Chem., 2012,14:1264-1267. doi: 10.1039/c2gc16594e

    13. [13]

      Johnson J, Bakranov N, Moniruddin M, Iskakov R, Kudaibergenov S, Nuraje N. Spontaneous polarization field-enhanced charge separation for an iron oxide photo-catalyst[J]. New J. Chem., 2017,41:15528-15532. doi: 10.1039/C7NJ03629A

    14. [14]

      Xu T Y, Ji H D, Gu Y, Tong T Y, Xia Y B, Zhang L Z, Zhao D Y. Enhanced adsorption and photocatalytic degradation of perfluorooctanoic acid in water using iron (hydr)oxides/carbon sphere composite[J]. Chem. Eng. J., 2020,388124230. doi: 10.1016/j.cej.2020.124230

    15. [15]

      Maksoud M I A A, Fahim R A, Bedir A G, Osman A I, Abouelela M M, El-Sayyad G S, Abd Elkodous M, Mahmoud A S, Rabee M M, Al-Muhtaseb A H, Rooney D W. Engineering magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: A review[J]. Environ. Chem. Lett., 2022,20:519-562. doi: 10.1007/s10311-021-01351-3

    16. [16]

      ZHANG L Y, WU J J, MENG Y, XIA S J. Direct Z-scheme heterojunction CeO2@NiAl-LDHs for photodegradation of Rhodamine B and photocatalytic hydrogen evolution: Performance and mechanism[J]. Chinese J. Inorg. Chem., 2021,37(2):316-326.  

    17. [17]

      CHANG F, ZHAO Y J, SHOU Y P, ZHANG L, WANG J N, SHI T T. One-pot preparation of Fe2O3/Fe2TiO5 S-scheme heterojunction photocatalyst for highly efficient degradation of organic pollution[J]. Chinese J. Inorg. Chem., 2022,38(9):1862-1870.

    18. [18]

      Chen C W, Lee M H, Clark S J. Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field[J]. Nanotechnology, 2004,15:1837-1843. doi: 10.1088/0957-4484/15/12/025

    19. [19]

      Wang R N, Yang M, Dong G Y, Wang S F, Fu G S, Wang J L. Strain and electric field co-modulation of electronic properties of bilayer boronitrene[J]. J. Phys.-Condes. Matter, 2016,28055302. doi: 10.1088/0953-8984/28/5/055302

    20. [20]

      Zhang Y B, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 2009,459:820-823. doi: 10.1038/nature08105

    21. [21]

      Tsen K T, Kiang J G, Ferry D K, Kochelap V A, Komirenko S M, Kim K W, Morkoc H. Subpicosecond Raman studies of electric-field-induced optical phonon instability in an In0.53Ga0.47As-based semiconductor nanostructure[J]. J. Phys.-Condes. Matter, 2006,18:7961-7974. doi: 10.1088/0953-8984/18/34/009

    22. [22]

      Miah M I. Spin drift and spin diffusion currents in semiconductors[J]. Sci. Technol. Adv. Mater., 2008,9035014. doi: 10.1088/1468-6996/9/3/035014

    23. [23]

      persano Adorno D, Pizzolato N, Spagnolo B. The influence of noise on electron dynamics in semiconductors driven by a periodic electric field[J]. J. Stat. Mech.-Theory Exp., 2009P01039.

    24. [24]

      Yu Y N, Liu J, Yang Y J, Ding J Y, Zhang A J. Experimental and theoretical studies of cadmium adsorption over Fe2O3 sorbent in incineration flue gas[J]. Chem. Eng. J., 2021,425131647. doi: 10.1016/j.cej.2021.131647

    25. [25]

      Guimaraes W G, de Lima G F, Duarte H A. Comparative DFT study of the oxy(hydr)oxides of iron and aluminum-structural, electronic and surface properties[J]. Surf. Sci., 2021,708121821. doi: 10.1016/j.susc.2021.121821

    26. [26]

      Hsu L C, Tzou Y M, Ho M S, Sivakumar C, Cho Y L, Li W H, Chiang P N, Teah H Y, Liu Y T. Preferential phosphate sorption and Al substitution on goethite[J]. Environ. Sci.-Nano, 2020,7:3497-3508. doi: 10.1039/C9EN01435G

    27. [27]

      Cornell R M, Schwertmann U. The iron oxides, structure, properties, reactions occurrences, and uses. 2nd ed. Weinheim, Germany: Wiley-VCH, 2003: 12-32

  • 加载中
    1. [1]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    2. [2]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    3. [3]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    7. [7]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    8. [8]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    9. [9]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    13. [13]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    14. [14]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Xiangchun Li Wei Xue Xu Liu Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018

    17. [17]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    20. [20]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

Metrics
  • PDF Downloads(0)
  • Abstract views(381)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return