Effect of external electric field on the electronic structure of ferrite using the density functional theory simulation
- Corresponding author: Rui WANG, wangrui20190819@163.com
Citation: Hanmei HUANG, Shiyong WEI, Xiaolong CHEN, Zhongkui XIE, Wenjun XIANG, Rui WANG. Effect of external electric field on the electronic structure of ferrite using the density functional theory simulation[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 361-372. doi: 10.11862/CJIC.20230230
Parkinson G S. Iron oxide surfaces[J]. Surf. Sci. Rep., 2016,71:272-365. doi: 10.1016/j.surfrep.2016.02.001
Luo H W, Zeng Y F, He D Q, Pan X L. Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review[J]. Chem. Eng. J., 2021,407127191. doi: 10.1016/j.cej.2020.127191
Zhu M H, Wachs I E. Iron-based catalysts for the high-temperature water gas shift (HT-WGS) reaction: A review[J]. ACS Catal., 2016,6:722-732. doi: 10.1021/acscatal.5b02594
WU S S, MA B K, JIA Q M, WANG Y M, DAI W L, ZHANG S Y. Synthesis and photocatalytic properties of magnetically separated Ni-Zn ferrite-graphene nanocomposite[J]. Chinese J. Inorg. Chem., 2016,32(4):561-566.
Guo S L, Yi W T, Li Z Z. Effect of magnetic nanoparticles on magnetic field homogeneity[J]. Chin. Phys. B, 2023,32050203. doi: 10.1088/1674-1056/acaa26
Ling D, Lee N, Hyeon T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications[J]. Accounts Chem. Res., 2015,48:1276-1285. doi: 10.1021/acs.accounts.5b00038
Yu M Q, Budiyanto E, Tüysüz H. Principles of water electrolysis and recent progress in Cobalt-, Nickel-, and Iron-based oxides for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2022,61e202103824. doi: 10.1002/anie.202103824
Weng H, Yang Y, Zhang C, Cheng M, Wang W J, Song B, Luo H Z, Qin D Y, Huang C, Qin F Z, Li K T. Insight into FeOOH-mediated advanced oxidation processes for the treatment of organic polluted wastewater[J]. Chem. Eng. J., 2023,453139812. doi: 10.1016/j.cej.2022.139812
Carraro G, Sugrañez R, Maccato C, Gasparotto A, Barreca D, Sada C, Cruz-Yusta M, Sánchez L. Nanostructured iron(Ⅲ) oxides: From design to gas- and liquid-phase photo-catalytic applications[J]. Thin Solid Films, 2014,564:121-127. doi: 10.1016/j.tsf.2014.05.048
Li Z, Sheng J Y, Wang Y, Xu Y M. Enhanced photocatalytic activity and stability of alumina supported hematite for azo-dye degradation in aerated aqueous suspension[J]. J. Hazard. Mater., 2013,254-255:18-25. doi: 10.1016/j.jhazmat.2013.03.055
Kumar Y, Kumar R, Raizada P, Khan A A P, Singh A, Le Q V, Nguyen V H, Selvasembian R, Thakur S, Singh P. Current status of hematite (α-Fe2O3) based Z-scheme photocatalytic systems for environmental and energy applications[J]. J. Environ. Chem. Eng., 2022,10107427. doi: 10.1016/j.jece.2022.107427
Ide Y, Hattori H, Ogo S, Sadakane M, Sano T. Highly efficient and selective sunlight-induced photocatalytic oxidation of cyclohexane on an eco-catalyst under a CO2 atmosphere[J]. Green Chem., 2012,14:1264-1267. doi: 10.1039/c2gc16594e
Johnson J, Bakranov N, Moniruddin M, Iskakov R, Kudaibergenov S, Nuraje N. Spontaneous polarization field-enhanced charge separation for an iron oxide photo-catalyst[J]. New J. Chem., 2017,41:15528-15532. doi: 10.1039/C7NJ03629A
Xu T Y, Ji H D, Gu Y, Tong T Y, Xia Y B, Zhang L Z, Zhao D Y. Enhanced adsorption and photocatalytic degradation of perfluorooctanoic acid in water using iron (hydr)oxides/carbon sphere composite[J]. Chem. Eng. J., 2020,388124230. doi: 10.1016/j.cej.2020.124230
Maksoud M I A A, Fahim R A, Bedir A G, Osman A I, Abouelela M M, El-Sayyad G S, Abd Elkodous M, Mahmoud A S, Rabee M M, Al-Muhtaseb A H, Rooney D W. Engineering magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: A review[J]. Environ. Chem. Lett., 2022,20:519-562. doi: 10.1007/s10311-021-01351-3
ZHANG L Y, WU J J, MENG Y, XIA S J. Direct Z-scheme heterojunction CeO2@NiAl-LDHs for photodegradation of Rhodamine B and photocatalytic hydrogen evolution: Performance and mechanism[J]. Chinese J. Inorg. Chem., 2021,37(2):316-326.
CHANG F, ZHAO Y J, SHOU Y P, ZHANG L, WANG J N, SHI T T. One-pot preparation of Fe2O3/Fe2TiO5 S-scheme heterojunction photocatalyst for highly efficient degradation of organic pollution[J]. Chinese J. Inorg. Chem., 2022,38(9):1862-1870.
Chen C W, Lee M H, Clark S J. Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field[J]. Nanotechnology, 2004,15:1837-1843. doi: 10.1088/0957-4484/15/12/025
Wang R N, Yang M, Dong G Y, Wang S F, Fu G S, Wang J L. Strain and electric field co-modulation of electronic properties of bilayer boronitrene[J]. J. Phys.-Condes. Matter, 2016,28055302. doi: 10.1088/0953-8984/28/5/055302
Zhang Y B, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 2009,459:820-823. doi: 10.1038/nature08105
Tsen K T, Kiang J G, Ferry D K, Kochelap V A, Komirenko S M, Kim K W, Morkoc H. Subpicosecond Raman studies of electric-field-induced optical phonon instability in an In0.53Ga0.47As-based semiconductor nanostructure[J]. J. Phys.-Condes. Matter, 2006,18:7961-7974. doi: 10.1088/0953-8984/18/34/009
Miah M I. Spin drift and spin diffusion currents in semiconductors[J]. Sci. Technol. Adv. Mater., 2008,9035014. doi: 10.1088/1468-6996/9/3/035014
persano Adorno D, Pizzolato N, Spagnolo B. The influence of noise on electron dynamics in semiconductors driven by a periodic electric field[J]. J. Stat. Mech.-Theory Exp., 2009P01039.
Yu Y N, Liu J, Yang Y J, Ding J Y, Zhang A J. Experimental and theoretical studies of cadmium adsorption over Fe2O3 sorbent in incineration flue gas[J]. Chem. Eng. J., 2021,425131647. doi: 10.1016/j.cej.2021.131647
Guimaraes W G, de Lima G F, Duarte H A. Comparative DFT study of the oxy(hydr)oxides of iron and aluminum-structural, electronic and surface properties[J]. Surf. Sci., 2021,708121821. doi: 10.1016/j.susc.2021.121821
Hsu L C, Tzou Y M, Ho M S, Sivakumar C, Cho Y L, Li W H, Chiang P N, Teah H Y, Liu Y T. Preferential phosphate sorption and Al substitution on goethite[J]. Environ. Sci.-Nano, 2020,7:3497-3508. doi: 10.1039/C9EN01435G
Cornell R M, Schwertmann U. The iron oxides, structure, properties, reactions occurrences, and uses. 2nd ed. Weinheim, Germany: Wiley-VCH, 2003: 12-32
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Xiangchun Li , Wei Xue , Xu Liu , Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003
(a-d) stand for the electric field of 0, 0.001, 0.01, and 0.1 V·nm-1, respectively.
(a-d) stand for the electric field of 0, 0.001, 0.01, and 0.1 V·nm-1, respectively.
(a-d) stand for the electric field of 0, 0.001, 0.01, and 0.1 V·nm-1, respectively.
(a-d) stand for the electric field of 0, 0.001, 0.01, and 0.1 V·nm-1, respectively; the gray ball and red ball in the graph are Fe atom and O atom; the color scale from blue to red and the [0, 1] normalized numbers from small to large are positively associated with the localization of electron.
(a-d) stand for the electric field of 0, 0.001, 0.01, and 0.1 V·nm-1, respectively; The gray ball and red ball in the graph are Fe atom and O atom; The color scale from blue to red and the [0, 1] normalized numbers from small to large are positively associated with the localization of electron.
(a-d) stand for the electric field of 0, 0.001, 0.01, and 0.1 V·nm-1, respectively; The gray ball and red ball in the graph are Fe atom and O atom; The color scale from blue to red and the [0, 1] normalized numbers from small to large are positively associated with the localization of electron.