Citation: Hanmei HUANG, Shiyong WEI, Xiaolong CHEN, Zhongkui XIE, Wenjun XIANG, Rui WANG. Effect of external electric field on the electronic structure of ferrite using the density functional theory simulation[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 361-372. doi: 10.11862/CJIC.20230230 shu

Effect of external electric field on the electronic structure of ferrite using the density functional theory simulation

  • Corresponding author: Rui WANG, wangrui20190819@163.com
  • Received Date: 14 June 2023
    Revised Date: 22 December 2023

Figures(11)

  • In this work, the electronic structure of three ferrites, Fe2O3 (hematite), Fe3O4 (magnetite), and α-FeOOH (goethite), have been calculated with the density functional theory (DFT) under external electric field (E) for investigating the effect of the external electric field on the electronic structure of ferrites. It was found that the external electric field could continue to decrease the band gap by 0.36, 0.12, and 0.34 eV under an E of 0.01 V·nm-1 through signally changing the valance band maximum. When it increased to 0.1 V·nm-1, Fe2O3 would be broken down by the external electronic field, causing a breaking of the Fe—O bond and a delocalization among Fe atoms along the E direction. At the same time, Fe3O4 and α-FeOOH could maintain their crystal with some effect on the localization and energy of the electron. In addition, it showed a degeneration of the valance electron for three ferrites under the external electric field. For Fe2O3, the Hirshfeld charge of the Fe atoms was reduced while improved for the O atoms along with an increase in the external electronic field. Interestingly, the Hirshfeld charge for both Fe atoms with the form charge of +2 and +3 in Fe3O4 was not influenced by the external electronic field. As for α-FeOOH, the unit of FeO6 located on the edge of the chain was more sensitive than that of the body FeO6 in the chain towards the external electronic field. Meanwhile, the H atom of the terminated -OH in α-FeOOH exhibited a disproportionated response on the Hirshfeld charge under the external electronic field. With the spin of electrons in ferrites, increasing the external electronic field would improve the spin of electrons in Fe3O4 while reducing it in α-FeOOH among an E of 0.001-0.1 V·nm-1.
  • 加载中
    1. [1]

      Parkinson G S. Iron oxide surfaces[J]. Surf. Sci. Rep., 2016,71:272-365. doi: 10.1016/j.surfrep.2016.02.001

    2. [2]

      Luo H W, Zeng Y F, He D Q, Pan X L. Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review[J]. Chem. Eng. J., 2021,407127191. doi: 10.1016/j.cej.2020.127191

    3. [3]

      Zhu M H, Wachs I E. Iron-based catalysts for the high-temperature water gas shift (HT-WGS) reaction: A review[J]. ACS Catal., 2016,6:722-732. doi: 10.1021/acscatal.5b02594

    4. [4]

      WU S S, MA B K, JIA Q M, WANG Y M, DAI W L, ZHANG S Y. Synthesis and photocatalytic properties of magnetically separated Ni-Zn ferrite-graphene nanocomposite[J]. Chinese J. Inorg. Chem., 2016,32(4):561-566.  

    5. [5]

      Guo S L, Yi W T, Li Z Z. Effect of magnetic nanoparticles on magnetic field homogeneity[J]. Chin. Phys. B, 2023,32050203. doi: 10.1088/1674-1056/acaa26

    6. [6]

      Ling D, Lee N, Hyeon T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications[J]. Accounts Chem. Res., 2015,48:1276-1285. doi: 10.1021/acs.accounts.5b00038

    7. [7]

      Yu M Q, Budiyanto E, Tüysüz H. Principles of water electrolysis and recent progress in Cobalt-, Nickel-, and Iron-based oxides for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2022,61e202103824. doi: 10.1002/anie.202103824

    8. [8]

      Weng H, Yang Y, Zhang C, Cheng M, Wang W J, Song B, Luo H Z, Qin D Y, Huang C, Qin F Z, Li K T. Insight into FeOOH-mediated advanced oxidation processes for the treatment of organic polluted wastewater[J]. Chem. Eng. J., 2023,453139812. doi: 10.1016/j.cej.2022.139812

    9. [9]

      Carraro G, Sugrañez R, Maccato C, Gasparotto A, Barreca D, Sada C, Cruz-Yusta M, Sánchez L. Nanostructured iron(Ⅲ) oxides: From design to gas- and liquid-phase photo-catalytic applications[J]. Thin Solid Films, 2014,564:121-127. doi: 10.1016/j.tsf.2014.05.048

    10. [10]

      Li Z, Sheng J Y, Wang Y, Xu Y M. Enhanced photocatalytic activity and stability of alumina supported hematite for azo-dye degradation in aerated aqueous suspension[J]. J. Hazard. Mater., 2013,254-255:18-25. doi: 10.1016/j.jhazmat.2013.03.055

    11. [11]

      Kumar Y, Kumar R, Raizada P, Khan A A P, Singh A, Le Q V, Nguyen V H, Selvasembian R, Thakur S, Singh P. Current status of hematite (α-Fe2O3) based Z-scheme photocatalytic systems for environmental and energy applications[J]. J. Environ. Chem. Eng., 2022,10107427. doi: 10.1016/j.jece.2022.107427

    12. [12]

      Ide Y, Hattori H, Ogo S, Sadakane M, Sano T. Highly efficient and selective sunlight-induced photocatalytic oxidation of cyclohexane on an eco-catalyst under a CO2 atmosphere[J]. Green Chem., 2012,14:1264-1267. doi: 10.1039/c2gc16594e

    13. [13]

      Johnson J, Bakranov N, Moniruddin M, Iskakov R, Kudaibergenov S, Nuraje N. Spontaneous polarization field-enhanced charge separation for an iron oxide photo-catalyst[J]. New J. Chem., 2017,41:15528-15532. doi: 10.1039/C7NJ03629A

    14. [14]

      Xu T Y, Ji H D, Gu Y, Tong T Y, Xia Y B, Zhang L Z, Zhao D Y. Enhanced adsorption and photocatalytic degradation of perfluorooctanoic acid in water using iron (hydr)oxides/carbon sphere composite[J]. Chem. Eng. J., 2020,388124230. doi: 10.1016/j.cej.2020.124230

    15. [15]

      Maksoud M I A A, Fahim R A, Bedir A G, Osman A I, Abouelela M M, El-Sayyad G S, Abd Elkodous M, Mahmoud A S, Rabee M M, Al-Muhtaseb A H, Rooney D W. Engineering magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: A review[J]. Environ. Chem. Lett., 2022,20:519-562. doi: 10.1007/s10311-021-01351-3

    16. [16]

      ZHANG L Y, WU J J, MENG Y, XIA S J. Direct Z-scheme heterojunction CeO2@NiAl-LDHs for photodegradation of Rhodamine B and photocatalytic hydrogen evolution: Performance and mechanism[J]. Chinese J. Inorg. Chem., 2021,37(2):316-326.  

    17. [17]

      CHANG F, ZHAO Y J, SHOU Y P, ZHANG L, WANG J N, SHI T T. One-pot preparation of Fe2O3/Fe2TiO5 S-scheme heterojunction photocatalyst for highly efficient degradation of organic pollution[J]. Chinese J. Inorg. Chem., 2022,38(9):1862-1870.

    18. [18]

      Chen C W, Lee M H, Clark S J. Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field[J]. Nanotechnology, 2004,15:1837-1843. doi: 10.1088/0957-4484/15/12/025

    19. [19]

      Wang R N, Yang M, Dong G Y, Wang S F, Fu G S, Wang J L. Strain and electric field co-modulation of electronic properties of bilayer boronitrene[J]. J. Phys.-Condes. Matter, 2016,28055302. doi: 10.1088/0953-8984/28/5/055302

    20. [20]

      Zhang Y B, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 2009,459:820-823. doi: 10.1038/nature08105

    21. [21]

      Tsen K T, Kiang J G, Ferry D K, Kochelap V A, Komirenko S M, Kim K W, Morkoc H. Subpicosecond Raman studies of electric-field-induced optical phonon instability in an In0.53Ga0.47As-based semiconductor nanostructure[J]. J. Phys.-Condes. Matter, 2006,18:7961-7974. doi: 10.1088/0953-8984/18/34/009

    22. [22]

      Miah M I. Spin drift and spin diffusion currents in semiconductors[J]. Sci. Technol. Adv. Mater., 2008,9035014. doi: 10.1088/1468-6996/9/3/035014

    23. [23]

      persano Adorno D, Pizzolato N, Spagnolo B. The influence of noise on electron dynamics in semiconductors driven by a periodic electric field[J]. J. Stat. Mech.-Theory Exp., 2009P01039.

    24. [24]

      Yu Y N, Liu J, Yang Y J, Ding J Y, Zhang A J. Experimental and theoretical studies of cadmium adsorption over Fe2O3 sorbent in incineration flue gas[J]. Chem. Eng. J., 2021,425131647. doi: 10.1016/j.cej.2021.131647

    25. [25]

      Guimaraes W G, de Lima G F, Duarte H A. Comparative DFT study of the oxy(hydr)oxides of iron and aluminum-structural, electronic and surface properties[J]. Surf. Sci., 2021,708121821. doi: 10.1016/j.susc.2021.121821

    26. [26]

      Hsu L C, Tzou Y M, Ho M S, Sivakumar C, Cho Y L, Li W H, Chiang P N, Teah H Y, Liu Y T. Preferential phosphate sorption and Al substitution on goethite[J]. Environ. Sci.-Nano, 2020,7:3497-3508. doi: 10.1039/C9EN01435G

    27. [27]

      Cornell R M, Schwertmann U. The iron oxides, structure, properties, reactions occurrences, and uses. 2nd ed. Weinheim, Germany: Wiley-VCH, 2003: 12-32

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    3. [3]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    6. [6]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    9. [9]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    10. [10]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    13. [13]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    14. [14]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    15. [15]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    16. [16]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    17. [17]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    18. [18]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    19. [19]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(2)
  • Abstract views(793)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return