Effect of external electric field on the electronic structure of ferrite using the density functional theory simulation
- Corresponding author: Rui WANG, wangrui20190819@163.com
Citation:
Hanmei HUANG, Shiyong WEI, Xiaolong CHEN, Zhongkui XIE, Wenjun XIANG, Rui WANG. Effect of external electric field on the electronic structure of ferrite using the density functional theory simulation[J]. Chinese Journal of Inorganic Chemistry,
;2024, 40(2): 361-372.
doi:
10.11862/CJIC.20230230
Parkinson G S. Iron oxide surfaces[J]. Surf. Sci. Rep., 2016,71:272-365. doi: 10.1016/j.surfrep.2016.02.001
Luo H W, Zeng Y F, He D Q, Pan X L. Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review[J]. Chem. Eng. J., 2021,407127191. doi: 10.1016/j.cej.2020.127191
Zhu M H, Wachs I E. Iron-based catalysts for the high-temperature water gas shift (HT-WGS) reaction: A review[J]. ACS Catal., 2016,6:722-732. doi: 10.1021/acscatal.5b02594
WU S S, MA B K, JIA Q M, WANG Y M, DAI W L, ZHANG S Y. Synthesis and photocatalytic properties of magnetically separated Ni-Zn ferrite-graphene nanocomposite[J]. Chinese J. Inorg. Chem., 2016,32(4):561-566.
Guo S L, Yi W T, Li Z Z. Effect of magnetic nanoparticles on magnetic field homogeneity[J]. Chin. Phys. B, 2023,32050203. doi: 10.1088/1674-1056/acaa26
Ling D, Lee N, Hyeon T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications[J]. Accounts Chem. Res., 2015,48:1276-1285. doi: 10.1021/acs.accounts.5b00038
Yu M Q, Budiyanto E, Tüysüz H. Principles of water electrolysis and recent progress in Cobalt-, Nickel-, and Iron-based oxides for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2022,61e202103824. doi: 10.1002/anie.202103824
Weng H, Yang Y, Zhang C, Cheng M, Wang W J, Song B, Luo H Z, Qin D Y, Huang C, Qin F Z, Li K T. Insight into FeOOH-mediated advanced oxidation processes for the treatment of organic polluted wastewater[J]. Chem. Eng. J., 2023,453139812. doi: 10.1016/j.cej.2022.139812
Carraro G, Sugrañez R, Maccato C, Gasparotto A, Barreca D, Sada C, Cruz-Yusta M, Sánchez L. Nanostructured iron(Ⅲ) oxides: From design to gas- and liquid-phase photo-catalytic applications[J]. Thin Solid Films, 2014,564:121-127. doi: 10.1016/j.tsf.2014.05.048
Li Z, Sheng J Y, Wang Y, Xu Y M. Enhanced photocatalytic activity and stability of alumina supported hematite for azo-dye degradation in aerated aqueous suspension[J]. J. Hazard. Mater., 2013,254-255:18-25. doi: 10.1016/j.jhazmat.2013.03.055
Kumar Y, Kumar R, Raizada P, Khan A A P, Singh A, Le Q V, Nguyen V H, Selvasembian R, Thakur S, Singh P. Current status of hematite (α-Fe2O3) based Z-scheme photocatalytic systems for environmental and energy applications[J]. J. Environ. Chem. Eng., 2022,10107427. doi: 10.1016/j.jece.2022.107427
Ide Y, Hattori H, Ogo S, Sadakane M, Sano T. Highly efficient and selective sunlight-induced photocatalytic oxidation of cyclohexane on an eco-catalyst under a CO2 atmosphere[J]. Green Chem., 2012,14:1264-1267. doi: 10.1039/c2gc16594e
Johnson J, Bakranov N, Moniruddin M, Iskakov R, Kudaibergenov S, Nuraje N. Spontaneous polarization field-enhanced charge separation for an iron oxide photo-catalyst[J]. New J. Chem., 2017,41:15528-15532. doi: 10.1039/C7NJ03629A
Xu T Y, Ji H D, Gu Y, Tong T Y, Xia Y B, Zhang L Z, Zhao D Y. Enhanced adsorption and photocatalytic degradation of perfluorooctanoic acid in water using iron (hydr)oxides/carbon sphere composite[J]. Chem. Eng. J., 2020,388124230. doi: 10.1016/j.cej.2020.124230
Maksoud M I A A, Fahim R A, Bedir A G, Osman A I, Abouelela M M, El-Sayyad G S, Abd Elkodous M, Mahmoud A S, Rabee M M, Al-Muhtaseb A H, Rooney D W. Engineering magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: A review[J]. Environ. Chem. Lett., 2022,20:519-562. doi: 10.1007/s10311-021-01351-3
ZHANG L Y, WU J J, MENG Y, XIA S J. Direct Z-scheme heterojunction CeO2@NiAl-LDHs for photodegradation of Rhodamine B and photocatalytic hydrogen evolution: Performance and mechanism[J]. Chinese J. Inorg. Chem., 2021,37(2):316-326.
CHANG F, ZHAO Y J, SHOU Y P, ZHANG L, WANG J N, SHI T T. One-pot preparation of Fe2O3/Fe2TiO5 S-scheme heterojunction photocatalyst for highly efficient degradation of organic pollution[J]. Chinese J. Inorg. Chem., 2022,38(9):1862-1870.
Chen C W, Lee M H, Clark S J. Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field[J]. Nanotechnology, 2004,15:1837-1843. doi: 10.1088/0957-4484/15/12/025
Wang R N, Yang M, Dong G Y, Wang S F, Fu G S, Wang J L. Strain and electric field co-modulation of electronic properties of bilayer boronitrene[J]. J. Phys.-Condes. Matter, 2016,28055302. doi: 10.1088/0953-8984/28/5/055302
Zhang Y B, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 2009,459:820-823. doi: 10.1038/nature08105
Tsen K T, Kiang J G, Ferry D K, Kochelap V A, Komirenko S M, Kim K W, Morkoc H. Subpicosecond Raman studies of electric-field-induced optical phonon instability in an In0.53Ga0.47As-based semiconductor nanostructure[J]. J. Phys.-Condes. Matter, 2006,18:7961-7974. doi: 10.1088/0953-8984/18/34/009
Miah M I. Spin drift and spin diffusion currents in semiconductors[J]. Sci. Technol. Adv. Mater., 2008,9035014. doi: 10.1088/1468-6996/9/3/035014
persano Adorno D, Pizzolato N, Spagnolo B. The influence of noise on electron dynamics in semiconductors driven by a periodic electric field[J]. J. Stat. Mech.-Theory Exp., 2009P01039.
Yu Y N, Liu J, Yang Y J, Ding J Y, Zhang A J. Experimental and theoretical studies of cadmium adsorption over Fe2O3 sorbent in incineration flue gas[J]. Chem. Eng. J., 2021,425131647. doi: 10.1016/j.cej.2021.131647
Guimaraes W G, de Lima G F, Duarte H A. Comparative DFT study of the oxy(hydr)oxides of iron and aluminum-structural, electronic and surface properties[J]. Surf. Sci., 2021,708121821. doi: 10.1016/j.susc.2021.121821
Hsu L C, Tzou Y M, Ho M S, Sivakumar C, Cho Y L, Li W H, Chiang P N, Teah H Y, Liu Y T. Preferential phosphate sorption and Al substitution on goethite[J]. Environ. Sci.-Nano, 2020,7:3497-3508. doi: 10.1039/C9EN01435G
Cornell R M, Schwertmann U. The iron oxides, structure, properties, reactions occurrences, and uses. 2nd ed. Weinheim, Germany: Wiley-VCH, 2003: 12-32
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
Xintian Xie , Sicong Ma , Yefei Li , Cheng Shang , Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
(a-d) stand for the electric field of 0, 0.001, 0.01, and 0.1 V·nm-1, respectively.
(a-d) stand for the electric field of 0, 0.001, 0.01, and 0.1 V·nm-1, respectively.
(a-d) stand for the electric field of 0, 0.001, 0.01, and 0.1 V·nm-1, respectively.
(a-d) stand for the electric field of 0, 0.001, 0.01, and 0.1 V·nm-1, respectively; the gray ball and red ball in the graph are Fe atom and O atom; the color scale from blue to red and the [0, 1] normalized numbers from small to large are positively associated with the localization of electron.
(a-d) stand for the electric field of 0, 0.001, 0.01, and 0.1 V·nm-1, respectively; The gray ball and red ball in the graph are Fe atom and O atom; The color scale from blue to red and the [0, 1] normalized numbers from small to large are positively associated with the localization of electron.
(a-d) stand for the electric field of 0, 0.001, 0.01, and 0.1 V·nm-1, respectively; The gray ball and red ball in the graph are Fe atom and O atom; The color scale from blue to red and the [0, 1] normalized numbers from small to large are positively associated with the localization of electron.