Citation: Sheng HUANG, Husheng SHAN, Yulong ZHAO, Tongshun DING, Yifan REN, Xiuquan GU. Preparation of humidity sensors based on CsPbBr3 quantum dots for applications in microcrack detection[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 383-393. doi: 10.11862/CJIC.20230189 shu

Preparation of humidity sensors based on CsPbBr3 quantum dots for applications in microcrack detection

  • Corresponding author: Xiuquan GU, xqgu@cumt.edu.cn
  • Received Date: 18 May 2023
    Revised Date: 7 December 2023

Figures(10)

  • Perovskite CsPbBr3-Fe quantum dots (QDs) with good dispersion and uniform size were prepared using a simple solution route combined with an acetylacetone iron (AAI) modification technology. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. Then, a resistive humidity sensor was fabricated with the perovskite CsPbBr3-Fe QDs by a spin-coating method. The humidity sensitivity measurement results showed that the device had good linear and rapid response characteristics with a detection range of 10% to 100% relative humidity (RH). At 70% RH, the humid sensor displayed a sensitivity of 1.1, a response time of 38 s, and a recovery time of 38 s, respectively. In addition, we used the finite element method (FEM) to simulate the leakage behavior of pipeline microcracks, and verified the feasibility of using humidity sensors to detect the leakage locations by simulating the distribution of flow velocity and pressure fields under different flow velocities and pressures.
  • 加载中
    1. [1]

      Sadeghi M E, Shahrabi F T, Neshati J. Failure analysis of stress corrosion cracking occurred in a gas transmission steel pipeline[J]. Eng. Fail. Anal., 2011,18(3):963-970. doi: 10.1016/j.engfailanal.2010.11.014

    2. [2]

      LIU L G, HU H, LIU P, LU W, ZHAO K, ZENG D Z. Failure analysis of N80 oil pipe corrosion perforation in a shale gas well in southern Sichuan[J]. Materials Protection, 2023,56(11):193-198.

    3. [3]

      LI X, FENG D W, YANG Z N, YANG Y, XU Z D. Analysis of corrosion and perforation failure of oil tubing in a production well offshore[J]. Chemical Equipment Technology, 2023,44(5):35-39.

    4. [4]

      Tang Z H, Wang Z R, Lu Y W, Sun P P. Cause analysis and preventive measures of pipeline corrosion and leakage accident in alkylation unit[J]. Eng. Fail Anal., 2021,128105623. doi: 10.1016/j.engfailanal.2021.105623

    5. [5]

      Luo B, Sun Y J, Xu Z M, Chen G, Zhang L, Lu W N, Zhao X M, Yuan H Q. Damage characteristics and mechanism of the 2017 groundwater inrush accident that occurred at Dongyu coalmine in Taiyuan, Shanxi, China[J]. Water, 2021,13(3)368. doi: 10.3390/w13030368

    6. [6]

      YAN J, QI K, SONG W, ZHANG S N, WANG K. Detection and analysis of the height of the development of water conducting fracture zones in the Mudu Chaideng coal mine[J]. China Energy and Environmental Protection, 2023,45(9):272-278.

    7. [7]

      Zhang H, Li H X, Zhou J T, Tong K, Xia R C. A multi-dimensional evaluation of wire breakage in bridge cable based on self-magnetic flux leakage signals[J]. J. Magn. Magn. Mater., 2023,566170321. doi: 10.1016/j.jmmm.2022.170321

    8. [8]

      LI F M, LIU S Q, XU L, ZHANG H D, ZENG X M, CHEN Z H. Longitudinal bending mode conversion slotted circular tube piezoelectric ultrasonic transducer[J]. Sci. Sin.-Phys. Mech. Astron., 2023,11:198-209.

    9. [9]

      Conti F, Madeo F, Boiano A, Tarabini M. Electrical and mechanical data fusion for hydraulic valve leakage diagnosis[J]. Meas. Sci. Technol., 2023,34(4)044011. doi: 10.1088/1361-6501/acb376

    10. [10]

      Han L, Chen J F, Li H B, Liu G S, Leng B, Ahmed A, Zhang Z T. Multispectral water leakage detection based on a one-stage anchor-free modality fusion network for metro tunnels[J]. Autom. Constr., 2022,140104345. doi: 10.1016/j.autcon.2022.104345

    11. [11]

      Ahn B, Kim J, Choi B. Artificial intelligence-based machine learning considering flow and temperature of the pipeline for leak early detection using acoustic emission[J]. Eng. Fract. Mech., 2019,210:381-392. doi: 10.1016/j.engfracmech.2018.03.010

    12. [12]

      Marković L, Ivanišević A, Matijević J, Chan R S M, Tsoi J K H, Šnjarić D, Gjorgievska E. Micro-CT analysis and leakage of bioceramic retrofillings after ultrasonic and Er: YAG laser cavity preparations: An in vitro study[J]. Lasers Med. Sci., 2023,38(1)145. doi: 10.1007/s10103-023-03809-y

    13. [13]

      YU S G, ZHANG H Y, ZHANG J. Preparation of Cd/ZnO and study on its humidity sensitivity performance[J]. Journal of Xinjiang University (Natural Science Edition in Chinese and English), 2020,37(2):137-141.

    14. [14]

      Li R X, Yu J H, Wang S, Shi Y Q, Wang Z J, Wang K, Ni Z H, Yang X Y, Wei Z P, Chen R. Surface modification of all-inorganic halide perovskite nanorods by a microscale hydrophobic zeolite for stable and sensitive laser humidity sensing[J]. Nanoscale, 2020,12(25):13360-13367. doi: 10.1039/D0NR01889A

    15. [15]

      CHEN G D, ZHOU N, MAO H Y, CHEN D P. Research progress in organic polymer MEMS humidity sensors[J]. Micro/nano Electronics and Intelligent Manufacturing, 2021,3(4):47-58.

    16. [16]

      WANG W D, LI J, FAN Y Y, CAO J M, ZHANG Y, HU J. Preparation of CeO2/CuO gas sensor and its gas sensing performance of n- butanol[J]. Micronanoelectronic Technology, 2023,60(10):1626-1631.

    17. [17]

      Ghanizadeh S, Naghshara H, Meshginqalam B. A theoretical analysis of performance enhancement of SPR sensor based on ZnO and BaTiO3 for NH3 detection[J]. Phys. Scr., 2023,98(11)115412. doi: 10.1088/1402-4896/acfad1

    18. [18]

      Zhang M, Wei S H, Ren W, Wu R. Development of high sensitivity humidity sensor based on gray TiO2/SrTiO3 composite[J]. Sensors, 2017,17(6)1310. doi: 10.3390/s17061310

    19. [19]

      Wang P, Wu Y H, Cai B, Ma Q S, Zheng X J, Zhang W H. Solution‐processable perovskite solar cells toward commercialization: Progress and challenges[J]. Adv. Funct. Mater., 2019,29(47)1807661. doi: 10.1002/adfm.201807661

    20. [20]

      Steirer K X, Schulz P, Teeter G, Stevanovic V, Yang M, Zhu K, Berry J J. Defect tolerance in methylammonium lead triiodide perovskite[J]. ACS Energy Lett., 2016,1(2):360-366. doi: 10.1021/acsenergylett.6b00196

    21. [21]

      Liu Y, Zheng X P, Fang Y J, Zhou Y, Ni Z Y, Xiao X, Chen S S, Huang J S. Ligand assisted growth of perovskite single crystals with low defect density[J]. Nat. Commun., 2021,12(1)1686. doi: 10.1038/s41467-021-21934-6

    22. [22]

      Zhumekenov A A, Saidaminov M I, Haque M A, Alarousu E, Sarmah S P, Murali B, Dursun I, Miao X, Abdelhady A L, Wu T. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length[J]. ACS Energy Lett., 2016,1(1):32-37. doi: 10.1021/acsenergylett.6b00002

    23. [23]

      De Quilettes D W, Vorpahl S M, Stranks S D, Nagaoka H, Eperon G E, Ziffer M E, Snaith H J, Ginger D S. Impact of microstructure on local carrier lifetime in perovskite solar cells[J]. Science, 2015,348(6235):683-686. doi: 10.1126/science.aaa5333

    24. [24]

      Randall C A, Bhalla A S, Shrout T R, Cross L E. Classification and consequences of complex lead perovskite ferroelectrics with regard to b-site cation order[J]. J. Mater. Res., 1990,5(4):829-834. doi: 10.1557/JMR.1990.0829

    25. [25]

      Kim Y H, Kim S, Jo S H, Lee T W. Metal halide perovskites: From crystal formations to light‑emitting‑diode applications[J]. Small Methods, 2018,2(11)1800093. doi: 10.1002/smtd.201800093

    26. [26]

      WU Y J, WU Z L, WANG L, NIAN W Q, HE Y, GUO Y C. Respiratory rate monitoring system based on inorganic halide perovskite humidity sensor[J]. Opto-Electronic Engineering, 2021,48(3):37-44.

    27. [27]

      Haussonne J M, Desgardin G, Bajolet P H, Raveau B. Barium titanate perovskite sintered with lithium fluoride[J]. J. Am. Ceram. Soc., 1983,66(11):801-807.

    28. [28]

      Hirotsu S, Harada J, Iizumi M, Gesi K. Structural phase transitions in CsPbBr3[J]. J. Phys. Soc. Jap., 1974,37(5):1393-1398.

    29. [29]

      Park Y S, Bae W K, Padilha L A, Pietryga J M, Klimov V I. Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy[J]. Nano Lett., 2014,14(2):396-402.

    30. [30]

      Ren A B, Lai H G, Hao X, Tang Z G, Xu H, Jeco B M F Y, Watanabe K, Wu L L, Zhang J Q, Sugiyama M, Wu J, Zhao D W. Efficient perovskite solar modules with minimized nonradiative recombination and local carrier transport losses[J]. Joule, 2020,4(6):1263-1277.

    31. [31]

      Wang H R, Zhang X Y, Wu Q Q, Cao F, Yang D W, Shang Y Q, Ning Z J, Zhang W, Zheng W T, Yan Y Y, Kershaw S V, Zhang L J, Rogach A L, Yang X Y. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices[J]. Nat. Commun., 2019,10(1)665.

    32. [32]

      Arramel , Pan H, Xie A Z, Hou S Y, Yin X M, Tang C S, Hoa N T, Birowosuto M D, Wang H, Dang C, Rusydi A, Wee A T S, Wu J S. Surface molecular doping of all-inorganic perovskite using zethrenes molecules[J]. Nano Res., 2019,12:77-84.

    33. [33]

      Lee D H, Condrate Sr R A, Lacourse W C. FTIR spectral characterization of thin film coatings of oleic acid on glasses: Coatings on glasses from ethyl alcohol[J]. J. Mater. Sci., 1999,34(1):139-146.

    34. [34]

      Nakamato K. Infrared and Raman spectra of inorganic and coordination compound. 3rd ed. Translated by HUANG D R, WANG R Q. Beijing: Chemical Industry Press, 1986.

    35. [35]

      Wang C X, Yin L W, Zhang L Y, Xiang D, Gao R. Metal oxide gas sensors: Sensitivity and influencing factors[J]. Sensors, 2010,10(3):2088-2106.

    36. [36]

      Kumar M, Kumar A, Abhyankar A C. SnO2 based sensors with improved sensitivity and response-recovery time[J]. Ceram. Int., 2014,40(6):8411-8418.

    37. [37]

      Mainali P, Wagle P, Khatri N, McPherson C, Kalkan K, McIlroy D N. Humidity induced resistive switching and negative differential resistance in α-Fe2O3 porous thin films[J]. Sensor. Actuat. A-Phys., 2023,362114631.

    38. [38]

      Anderson Jr J H, Parks G A. Electrical conductivity of silica gel in the presence of adsorbed water[J]. J. Phys. Chem., 1968,72(10):3662-3668.

    39. [39]

      Agmon N. The grotthuss mechanism[J]. Chem. Phys. Lett., 1995,244(5):456-462.

    40. [40]

      Zhang D Z, Sun Y E, Li P, Zhang Y. Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing[J]. ACS Appl. Mater. Interfaces, 2016,8(22):14142-14149.

    41. [41]

      Thürmer S, Seidel R, Eberhardt W, Bradforth S E, Winter B. Ultrafast hybridization screening in Fe3+ aqueous solution[J]. J. Am. Chem. Soc., 2011,133(32):12528-12535.

    42. [42]

      Bentaher H, Ibrahmi A, Hamza E, Hbaieb M, Kantchev G, Maalej A, Arnold W. Finite element simulation of moldboard-soil interaction[J]. Soil Tillage Res., 2013,134:11-16.

  • 加载中
    1. [1]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    8. [8]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    9. [9]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    18. [18]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    19. [19]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(5)
  • Abstract views(399)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return