Citation: Shoutao LIU, Jianwei ZHAO, Fenying WANG, Hanjie MA. Relationship between the tensile fracture distribution of the hollow copper nanowires and the initial slip distribution[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 394-404. doi: 10.11862/CJIC.20230171 shu

Relationship between the tensile fracture distribution of the hollow copper nanowires and the initial slip distribution

  • Corresponding author: Jianwei ZHAO, jwzhao@zjxu.edu.cn
  • Received Date: 9 May 2023
    Revised Date: 2 January 2024

Figures(9)

  • To investigate the relationship between the fracture failure and the initial microstructure of the hollow nanowires (NW), a series of spherical hollow structures were constructed and molecular dynamics (MD) simulations were performed with 300 samples that have different initial states. The position of the initial slip plane was obtained using the density-based spatial clustering of applications with noise (DBSCAN) machine learning algorithm. Based on big data analysis, the distribution of the initial slip position and the fracture position were analyzed. The result of the correlation between the two shows that when the inner hollow radius is small, the distribution of fracture posi- tions is formed during the plastic deformation stage, so there is no correlation between the distribution of initial slip and fracture positions. However, for brittle NW with significantly larger hollow radii, the slip plane induced by the high -energy inner surface quickly accumulates, resulting in necking and ultimately fracture. Therefore, when the internal hollow structure reaches a certain size, there is a clear causal relationship between the distribution of initial slip positions and the distribution of final fracture positions.
  • 加载中
    1. [1]

      Esteki K, Curic D, Manning H G, Sheerin E, Ferreira M S, Boland J J, Rocha C G. Thermo-electro-optical properties of seamless metallic nanowire networks for transparent conductor applications[J]. Nanoscale, 2023,15(24):10394-10411. doi: 10.1039/D3NR01130E

    2. [2]

      Liu Y X, Zheng M, O'Connor B, Dong J Y, Zhu Y. Curvilinear soft electronics by micromolding of metal nanowires in capillaries[J]. Sci. Adv., 2022,8(46).

    3. [3]

      Cheng G M, Yao N, Zhu Y. Transition of deformation mechanism in single crystalline metallic nanowires[J]. Microsc. Microanal., 2022,28(S1):2308-2309. doi: 10.1017/S1431927622008868

    4. [4]

      Li P F, Han Y, Zhou X, Fan Z X, Xu S, Cao K, Meng F L, Gao L B, Song J, Zhang H, Lu Y. Thermal effect and rayleigh instability of ultrathin 4H hexagonal gold nanoribbons[J]. Matter, 2020,2(3):658-665. doi: 10.1016/j.matt.2019.10.003

    5. [5]

      Oshima Y, Onga A, Takayanagi K. Helical gold nanotube synthesized at 150 K[J]. Phys. Rev. Lett., 2003,91(20)205503. doi: 10.1103/PhysRevLett.91.205503

    6. [6]

      Oshima Y, Kondo Y, Takayanagi K. High-resolution ultrahigh-vacuum electron microscopy of helical gold nanowires: Junction and thinning process[J]. Microscopy, 2003,52(1):49-55.

    7. [7]

      Kushima A, Huang J Y, Li J. Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments[J]. ACS Nano, 2012,6(11):9425-9432. doi: 10.1021/nn3037623

    8. [8]

      Li X Q, Minor A M. Precise measurement of activation parameters for individual dislocation nucleation during in situ TEM tensile testing of single crystal nickel[J]. Scr. Mater., 2021,197113764. doi: 10.1016/j.scriptamat.2021.113764

    9. [9]

      Wang L H, Zhang Y, Zeng Z, Zhou H, He J, Liu P, Chen M W, Han J, Srolovitz D J, Teng J, Guo Y Z, Yang G, Kong D L, Ma E, Hu Y L, Yin B C, Huang X X, Zhang Z, Zhu T, Han X D. Tracking the sliding of grain boundaries at the atomic scale[J]. Science, 2022,375(6586):1261-1265. doi: 10.1126/science.abm2612

    10. [10]

      Kiani M T, Gan L T, Traylor R, Yang R, Barr C M, Hattar K, Fan J A, Gu X W. In situ TEM tensile testing of bicrystals with tailored misorientation angles[J]. Acta Mater., 2022,224117505. doi: 10.1016/j.actamat.2021.117505

    11. [11]

      Cheng N, Chen F, Li R, Durkan C, Wang N, Zhao J W. Correlation between the microstructure and the deformation behaviour of metallic nanowires[J]. Comput. Mater. Sci., 2019,168:116-124. doi: 10.1016/j.commatsci.2019.06.003

    12. [12]

      Pang W W, Yu S Y, Lin Z J, Zhao Y Z, Yin F X. Effects of crystal orientation and temperature on the deformation mechanism and mechanical property of Cu nanowire[J]. Micro Nano Lett., 2020,15(4):261-265. doi: 10.1049/mnl.2019.0559

    13. [13]

      Ma C C, Xue C, Chu Z B, Yang Q H, Li S, Yang B W. Effect of tensile rate on structural transformation and dislocation of magnesium single crystal based on molecular dynamics[J]. Mater. Today Commun., 2022,33104649. doi: 10.1016/j.mtcomm.2022.104649

    14. [14]

      Xing Z Y, Fan H D, Kang G Z. Molecular dynamics simulations on the intergranular crack propagation of magnesium bicrystals[J]. Comput. Mater. Sci., 2022,210111058. doi: 10.1016/j.commatsci.2021.111058

    15. [15]

      Wang D X, Zhao J W, Hu S, Yin X, Liang S, Liu Y H, Deng S Y. Where, and how, does a nanowire break?[J]. Nano Lett., 2007,7(5):1208-1212. doi: 10.1021/nl0629512

    16. [16]

      Wang F Y, Sun W, Gao Y J, Liu Y H, Zhao J W, Sun C Q. Investigation on the most probable breaking behaviors of copper nanowires with the dependence of temperature[J]. Comput. Mater. Sci., 2013,67:182-187. doi: 10.1016/j.commatsci.2012.07.048

    17. [17]

      Liu Y H, Wang F Y, Zhao J W, Jiang L Y, Kiguchi M, Murakoshi K. Theoretical investigation on the influence of temperature and crystallographic orientation on the breaking behavior of copper nanowire[J]. Phys. Chem. Chem. Phys., 2009,11(30):6514-6519. doi: 10.1039/b902795e

    18. [18]

      Liu Y H, Zhao J W. The size dependence of the mechanical properties and breaking behavior of metallic nanowires: A statistical description[J]. Comput. Mater. Sci., 2011,50(4):1418-1424. doi: 10.1016/j.commatsci.2010.11.026

    19. [19]

      ZHAO J W, LI R, CHENG N, HOU J. Influence of the initial structure of silver nanowires on tensile deformation and fracture distribution[J]. Scientia Sinica Technologica, 2018,48(2):143-153.

    20. [20]

      LI R, ZHAO J W, HOU J, HE Y Y, CHENG N. Influence of convex-concave microstructures on initial deformation in metal nanowires[J]. Chem. J. Chinese Universities, 2018,39(3):514-520.

    21. [21]

      ZHAO J W, SHEN K Y, YU X H, HOU J. Temperature dependence and correlation of initial microstructural defects and breaking[J]. Chinese J. Inorg. Chem., 2023,39(6):1193-1207.  

    22. [22]

      Hockney R W, Eastwood J W. Computer simulation using particles[J]. SIAM Rev., 1983,25(3):425-426. doi: 10.1137/1025102

    23. [23]

      Morales J J, Rull L F, Toxvaerd S. Efficiency test of the traditonal MD and the link-cell methods[J]. Comput. Phys. Commun., 1989,56(2):129-134. doi: 10.1016/0010-4655(89)90013-1

    24. [24]

      Rapaport D C. The art of molecular dynamics simulation. 2nd ed. Cambridge: Cambridge university press, 2004: 90-95

    25. [25]

      Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations[J]. Phys. Rev. B, 1999,59(5):3393-3407. doi: 10.1103/PhysRevB.59.3393

    26. [26]

      Johnson R A. Relationship between defect energies and embedded-atom-method parameters[J]. Phys. Rev. B, 1988,37(11):6121-6125. doi: 10.1103/PhysRevB.37.6121

    27. [27]

      Johnson R A. Alloy models with the embedded-atom method[J]. Phys. Rev. B, 1989,39(17):12554-12559. doi: 10.1103/PhysRevB.39.12554

    28. [28]

      Shen K Y, Cheng N, Zhao J W, Hou J. Correlation between the breaking behavior and the initial microstructural defects of the metallic nanowires: An approach from statistical analysis[J]. Comput. Mater. Sci., 2022,213111486. doi: 10.1016/j.commatsci.2022.111486

    29. [29]

      Zhao J W, Murakoshi K, Yin X, Kiguchi M, Guo Y, Wang N, Liang S, Liu H M. Dynamic characterization of the postbreaking behavior of a nanowire[J]. J. Phys. Chem. C, 2008,112(50):20088-20094. doi: 10.1021/jp8055448

    30. [30]

      Wu H A. Molecular dynamics study of the mechanics of metal nanowires at finite temperature[J]. Eur. J. Mech. A-Solids, 2006,25(2):370-377. doi: 10.1016/j.euromechsol.2005.11.008

    31. [31]

      Kelchner C L, Plimpton S J, Hamilton J C. Dislocation nucleation and defect structure during surface indentation[J]. Phys. Rev. B, 1998,58(17):11085-11088. doi: 10.1103/PhysRevB.58.11085

    32. [32]

      Settem M, Islam M, Kanjarla A K. On the effect of relative stabilities of FCC-like and HCP-like atoms on structure of FCC silver nanoclusters[J]. Comput. Mater. Sci., 2018,148:266-271. doi: 10.1016/j.commatsci.2018.02.051

    33. [33]

      Ester M, Kriegel H P, Sander J, Xu X W. A density-based algorithm for discovering clusters in large spatial databases with noise// Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996,96(34): 226-231

    34. [34]

      Sun Y L, Sun W, Fu Y Q, Wang F Y, Gao Y J, Zhao J W. The deformation behaviors of silver nanowires including 3D defects under tension[J]. Comput. Mater. Sci., 2013,79:63-68. doi: 10.1016/j.commatsci.2013.06.004

    35. [35]

      Zhan H F, Gu Y T, Yan C, Feng X Q, Yarlagadda P K D V. Numerical exploration of plastic deformation mechanisms of copper nanowires with surface defects[J]. Comput. Mater. Sci., 2011,50(12):3425-3430. doi: 10.1016/j.commatsci.2011.07.004

    36. [36]

      Cao A J, Wei Y G. Atomistic simulations of the mechanical behavior of fivefold twinned nanowires[J]. Phys. Rev. B, 2006,74(21)214108. doi: 10.1103/PhysRevB.74.214108

    37. [37]

      Deng C, Sansoz F. Near-ideal strength in gold nanowires achieved through microstructural design[J]. Acs Nano, 2009,3(10):3001-3008. doi: 10.1021/nn900668p

    38. [38]

      Deng C, Sansoz F. Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires[J]. Nano Lett., 2009,9(4):1517-1522. doi: 10.1021/nl803553b

    39. [39]

      WANG X X, ZHAO J W, YU G. Molecular dynamics simulation of the combined influence of pores and twin boundaries on the deformation behavior of silver nanowires[J]. Acta Phys.-Chim. Sin., 2017,33(9):1773-1780.

    40. [40]

      Tsuzuki H, Branicio P S, Rino J P. Structural characterization of deformed crystals by analysis of common atomic neighborhood[J]. Comput. Phys. Commun., 2007,177(6):518-523. doi: 10.1016/j.cpc.2007.05.018

    41. [41]

      Wang F Y, Gao Y J, Zhu T M, Zhao J W. Shock-induced breaking in the gold nanowire with the influence of defects and strain rates[J]. Nanoscale, 2011,3(4):1624-1631. doi: 10.1039/c0nr00797h

    42. [42]

      ZHAO J W, LI R, HOU J, CHENG N. The relationship between statistical distribution characteristics of nanowire fracture behavior and initial microscopic structures[J]. Scientia Sinica Technologica, 2018,48(7):719-728.

    43. [43]

      Sun J P, Fang L, Ma A B, Jiang J H, Han Y, Chen H W, Han J. The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation[J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2015,634:86-90. doi: 10.1016/j.msea.2015.03.034

    44. [44]

      Sainath G, Choudhary B K, Jayakumar T. Molecular dynamics simulation studies on the size dependent tensile deformation and fracture behaviour of body centred cubic iron nanowires[J]. Comput. Mater. Sci., 2015,104:76-83. doi: 10.1016/j.commatsci.2015.03.053

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

Metrics
  • PDF Downloads(0)
  • Abstract views(268)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return