Relationship between the tensile fracture distribution of the hollow copper nanowires and the initial slip distribution
- Corresponding author: Jianwei ZHAO, jwzhao@zjxu.edu.cn
Citation: Shoutao LIU, Jianwei ZHAO, Fenying WANG, Hanjie MA. Relationship between the tensile fracture distribution of the hollow copper nanowires and the initial slip distribution[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 394-404. doi: 10.11862/CJIC.20230171
Esteki K, Curic D, Manning H G, Sheerin E, Ferreira M S, Boland J J, Rocha C G. Thermo-electro-optical properties of seamless metallic nanowire networks for transparent conductor applications[J]. Nanoscale, 2023,15(24):10394-10411. doi: 10.1039/D3NR01130E
Liu Y X, Zheng M, O'Connor B, Dong J Y, Zhu Y. Curvilinear soft electronics by micromolding of metal nanowires in capillaries[J]. Sci. Adv., 2022,8(46).
Cheng G M, Yao N, Zhu Y. Transition of deformation mechanism in single crystalline metallic nanowires[J]. Microsc. Microanal., 2022,28(S1):2308-2309. doi: 10.1017/S1431927622008868
Li P F, Han Y, Zhou X, Fan Z X, Xu S, Cao K, Meng F L, Gao L B, Song J, Zhang H, Lu Y. Thermal effect and rayleigh instability of ultrathin 4H hexagonal gold nanoribbons[J]. Matter, 2020,2(3):658-665. doi: 10.1016/j.matt.2019.10.003
Oshima Y, Onga A, Takayanagi K. Helical gold nanotube synthesized at 150 K[J]. Phys. Rev. Lett., 2003,91(20)205503. doi: 10.1103/PhysRevLett.91.205503
Oshima Y, Kondo Y, Takayanagi K. High-resolution ultrahigh-vacuum electron microscopy of helical gold nanowires: Junction and thinning process[J]. Microscopy, 2003,52(1):49-55.
Kushima A, Huang J Y, Li J. Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments[J]. ACS Nano, 2012,6(11):9425-9432. doi: 10.1021/nn3037623
Li X Q, Minor A M. Precise measurement of activation parameters for individual dislocation nucleation during in situ TEM tensile testing of single crystal nickel[J]. Scr. Mater., 2021,197113764. doi: 10.1016/j.scriptamat.2021.113764
Wang L H, Zhang Y, Zeng Z, Zhou H, He J, Liu P, Chen M W, Han J, Srolovitz D J, Teng J, Guo Y Z, Yang G, Kong D L, Ma E, Hu Y L, Yin B C, Huang X X, Zhang Z, Zhu T, Han X D. Tracking the sliding of grain boundaries at the atomic scale[J]. Science, 2022,375(6586):1261-1265. doi: 10.1126/science.abm2612
Kiani M T, Gan L T, Traylor R, Yang R, Barr C M, Hattar K, Fan J A, Gu X W. In situ TEM tensile testing of bicrystals with tailored misorientation angles[J]. Acta Mater., 2022,224117505. doi: 10.1016/j.actamat.2021.117505
Cheng N, Chen F, Li R, Durkan C, Wang N, Zhao J W. Correlation between the microstructure and the deformation behaviour of metallic nanowires[J]. Comput. Mater. Sci., 2019,168:116-124. doi: 10.1016/j.commatsci.2019.06.003
Pang W W, Yu S Y, Lin Z J, Zhao Y Z, Yin F X. Effects of crystal orientation and temperature on the deformation mechanism and mechanical property of Cu nanowire[J]. Micro Nano Lett., 2020,15(4):261-265. doi: 10.1049/mnl.2019.0559
Ma C C, Xue C, Chu Z B, Yang Q H, Li S, Yang B W. Effect of tensile rate on structural transformation and dislocation of magnesium single crystal based on molecular dynamics[J]. Mater. Today Commun., 2022,33104649. doi: 10.1016/j.mtcomm.2022.104649
Xing Z Y, Fan H D, Kang G Z. Molecular dynamics simulations on the intergranular crack propagation of magnesium bicrystals[J]. Comput. Mater. Sci., 2022,210111058. doi: 10.1016/j.commatsci.2021.111058
Wang D X, Zhao J W, Hu S, Yin X, Liang S, Liu Y H, Deng S Y. Where, and how, does a nanowire break?[J]. Nano Lett., 2007,7(5):1208-1212. doi: 10.1021/nl0629512
Wang F Y, Sun W, Gao Y J, Liu Y H, Zhao J W, Sun C Q. Investigation on the most probable breaking behaviors of copper nanowires with the dependence of temperature[J]. Comput. Mater. Sci., 2013,67:182-187. doi: 10.1016/j.commatsci.2012.07.048
Liu Y H, Wang F Y, Zhao J W, Jiang L Y, Kiguchi M, Murakoshi K. Theoretical investigation on the influence of temperature and crystallographic orientation on the breaking behavior of copper nanowire[J]. Phys. Chem. Chem. Phys., 2009,11(30):6514-6519. doi: 10.1039/b902795e
Liu Y H, Zhao J W. The size dependence of the mechanical properties and breaking behavior of metallic nanowires: A statistical description[J]. Comput. Mater. Sci., 2011,50(4):1418-1424. doi: 10.1016/j.commatsci.2010.11.026
ZHAO J W, LI R, CHENG N, HOU J. Influence of the initial structure of silver nanowires on tensile deformation and fracture distribution[J]. Scientia Sinica Technologica, 2018,48(2):143-153.
LI R, ZHAO J W, HOU J, HE Y Y, CHENG N. Influence of convex-concave microstructures on initial deformation in metal nanowires[J]. Chem. J. Chinese Universities, 2018,39(3):514-520.
ZHAO J W, SHEN K Y, YU X H, HOU J. Temperature dependence and correlation of initial microstructural defects and breaking[J]. Chinese J. Inorg. Chem., 2023,39(6):1193-1207.
Hockney R W, Eastwood J W. Computer simulation using particles[J]. SIAM Rev., 1983,25(3):425-426. doi: 10.1137/1025102
Morales J J, Rull L F, Toxvaerd S. Efficiency test of the traditonal MD and the link-cell methods[J]. Comput. Phys. Commun., 1989,56(2):129-134. doi: 10.1016/0010-4655(89)90013-1
Rapaport D C. The art of molecular dynamics simulation. 2nd ed. Cambridge: Cambridge university press, 2004: 90-95
Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations[J]. Phys. Rev. B, 1999,59(5):3393-3407. doi: 10.1103/PhysRevB.59.3393
Johnson R A. Relationship between defect energies and embedded-atom-method parameters[J]. Phys. Rev. B, 1988,37(11):6121-6125. doi: 10.1103/PhysRevB.37.6121
Johnson R A. Alloy models with the embedded-atom method[J]. Phys. Rev. B, 1989,39(17):12554-12559. doi: 10.1103/PhysRevB.39.12554
Shen K Y, Cheng N, Zhao J W, Hou J. Correlation between the breaking behavior and the initial microstructural defects of the metallic nanowires: An approach from statistical analysis[J]. Comput. Mater. Sci., 2022,213111486. doi: 10.1016/j.commatsci.2022.111486
Zhao J W, Murakoshi K, Yin X, Kiguchi M, Guo Y, Wang N, Liang S, Liu H M. Dynamic characterization of the postbreaking behavior of a nanowire[J]. J. Phys. Chem. C, 2008,112(50):20088-20094. doi: 10.1021/jp8055448
Wu H A. Molecular dynamics study of the mechanics of metal nanowires at finite temperature[J]. Eur. J. Mech. A-Solids, 2006,25(2):370-377. doi: 10.1016/j.euromechsol.2005.11.008
Kelchner C L, Plimpton S J, Hamilton J C. Dislocation nucleation and defect structure during surface indentation[J]. Phys. Rev. B, 1998,58(17):11085-11088. doi: 10.1103/PhysRevB.58.11085
Settem M, Islam M, Kanjarla A K. On the effect of relative stabilities of FCC-like and HCP-like atoms on structure of FCC silver nanoclusters[J]. Comput. Mater. Sci., 2018,148:266-271. doi: 10.1016/j.commatsci.2018.02.051
Ester M, Kriegel H P, Sander J, Xu X W. A density-based algorithm for discovering clusters in large spatial databases with noise// Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996,96(34): 226-231
Sun Y L, Sun W, Fu Y Q, Wang F Y, Gao Y J, Zhao J W. The deformation behaviors of silver nanowires including 3D defects under tension[J]. Comput. Mater. Sci., 2013,79:63-68. doi: 10.1016/j.commatsci.2013.06.004
Zhan H F, Gu Y T, Yan C, Feng X Q, Yarlagadda P K D V. Numerical exploration of plastic deformation mechanisms of copper nanowires with surface defects[J]. Comput. Mater. Sci., 2011,50(12):3425-3430. doi: 10.1016/j.commatsci.2011.07.004
Cao A J, Wei Y G. Atomistic simulations of the mechanical behavior of fivefold twinned nanowires[J]. Phys. Rev. B, 2006,74(21)214108. doi: 10.1103/PhysRevB.74.214108
Deng C, Sansoz F. Near-ideal strength in gold nanowires achieved through microstructural design[J]. Acs Nano, 2009,3(10):3001-3008. doi: 10.1021/nn900668p
Deng C, Sansoz F. Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires[J]. Nano Lett., 2009,9(4):1517-1522. doi: 10.1021/nl803553b
WANG X X, ZHAO J W, YU G. Molecular dynamics simulation of the combined influence of pores and twin boundaries on the deformation behavior of silver nanowires[J]. Acta Phys.-Chim. Sin., 2017,33(9):1773-1780.
Tsuzuki H, Branicio P S, Rino J P. Structural characterization of deformed crystals by analysis of common atomic neighborhood[J]. Comput. Phys. Commun., 2007,177(6):518-523. doi: 10.1016/j.cpc.2007.05.018
Wang F Y, Gao Y J, Zhu T M, Zhao J W. Shock-induced breaking in the gold nanowire with the influence of defects and strain rates[J]. Nanoscale, 2011,3(4):1624-1631. doi: 10.1039/c0nr00797h
ZHAO J W, LI R, HOU J, CHENG N. The relationship between statistical distribution characteristics of nanowire fracture behavior and initial microscopic structures[J]. Scientia Sinica Technologica, 2018,48(7):719-728.
Sun J P, Fang L, Ma A B, Jiang J H, Han Y, Chen H W, Han J. The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation[J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2015,634:86-90. doi: 10.1016/j.msea.2015.03.034
Sainath G, Choudhary B K, Jayakumar T. Molecular dynamics simulation studies on the size dependent tensile deformation and fracture behaviour of body centred cubic iron nanowires[J]. Comput. Mater. Sci., 2015,104:76-83. doi: 10.1016/j.commatsci.2015.03.053
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
Yanxin Wang , Hongjuan Wang , Yuren Shi , Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005