Citation: Shoutao LIU, Jianwei ZHAO, Fenying WANG, Hanjie MA. Relationship between the tensile fracture distribution of the hollow copper nanowires and the initial slip distribution[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 394-404. doi: 10.11862/CJIC.20230171 shu

Relationship between the tensile fracture distribution of the hollow copper nanowires and the initial slip distribution

  • Corresponding author: Jianwei ZHAO, jwzhao@zjxu.edu.cn
  • Received Date: 9 May 2023
    Revised Date: 2 January 2024

Figures(9)

  • To investigate the relationship between the fracture failure and the initial microstructure of the hollow nanowires (NW), a series of spherical hollow structures were constructed and molecular dynamics (MD) simulations were performed with 300 samples that have different initial states. The position of the initial slip plane was obtained using the density-based spatial clustering of applications with noise (DBSCAN) machine learning algorithm. Based on big data analysis, the distribution of the initial slip position and the fracture position were analyzed. The result of the correlation between the two shows that when the inner hollow radius is small, the distribution of fracture posi- tions is formed during the plastic deformation stage, so there is no correlation between the distribution of initial slip and fracture positions. However, for brittle NW with significantly larger hollow radii, the slip plane induced by the high -energy inner surface quickly accumulates, resulting in necking and ultimately fracture. Therefore, when the internal hollow structure reaches a certain size, there is a clear causal relationship between the distribution of initial slip positions and the distribution of final fracture positions.
  • 加载中
    1. [1]

      Esteki K, Curic D, Manning H G, Sheerin E, Ferreira M S, Boland J J, Rocha C G. Thermo-electro-optical properties of seamless metallic nanowire networks for transparent conductor applications[J]. Nanoscale, 2023,15(24):10394-10411. doi: 10.1039/D3NR01130E

    2. [2]

      Liu Y X, Zheng M, O'Connor B, Dong J Y, Zhu Y. Curvilinear soft electronics by micromolding of metal nanowires in capillaries[J]. Sci. Adv., 2022,8(46).

    3. [3]

      Cheng G M, Yao N, Zhu Y. Transition of deformation mechanism in single crystalline metallic nanowires[J]. Microsc. Microanal., 2022,28(S1):2308-2309. doi: 10.1017/S1431927622008868

    4. [4]

      Li P F, Han Y, Zhou X, Fan Z X, Xu S, Cao K, Meng F L, Gao L B, Song J, Zhang H, Lu Y. Thermal effect and rayleigh instability of ultrathin 4H hexagonal gold nanoribbons[J]. Matter, 2020,2(3):658-665. doi: 10.1016/j.matt.2019.10.003

    5. [5]

      Oshima Y, Onga A, Takayanagi K. Helical gold nanotube synthesized at 150 K[J]. Phys. Rev. Lett., 2003,91(20)205503. doi: 10.1103/PhysRevLett.91.205503

    6. [6]

      Oshima Y, Kondo Y, Takayanagi K. High-resolution ultrahigh-vacuum electron microscopy of helical gold nanowires: Junction and thinning process[J]. Microscopy, 2003,52(1):49-55.

    7. [7]

      Kushima A, Huang J Y, Li J. Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments[J]. ACS Nano, 2012,6(11):9425-9432. doi: 10.1021/nn3037623

    8. [8]

      Li X Q, Minor A M. Precise measurement of activation parameters for individual dislocation nucleation during in situ TEM tensile testing of single crystal nickel[J]. Scr. Mater., 2021,197113764. doi: 10.1016/j.scriptamat.2021.113764

    9. [9]

      Wang L H, Zhang Y, Zeng Z, Zhou H, He J, Liu P, Chen M W, Han J, Srolovitz D J, Teng J, Guo Y Z, Yang G, Kong D L, Ma E, Hu Y L, Yin B C, Huang X X, Zhang Z, Zhu T, Han X D. Tracking the sliding of grain boundaries at the atomic scale[J]. Science, 2022,375(6586):1261-1265. doi: 10.1126/science.abm2612

    10. [10]

      Kiani M T, Gan L T, Traylor R, Yang R, Barr C M, Hattar K, Fan J A, Gu X W. In situ TEM tensile testing of bicrystals with tailored misorientation angles[J]. Acta Mater., 2022,224117505. doi: 10.1016/j.actamat.2021.117505

    11. [11]

      Cheng N, Chen F, Li R, Durkan C, Wang N, Zhao J W. Correlation between the microstructure and the deformation behaviour of metallic nanowires[J]. Comput. Mater. Sci., 2019,168:116-124. doi: 10.1016/j.commatsci.2019.06.003

    12. [12]

      Pang W W, Yu S Y, Lin Z J, Zhao Y Z, Yin F X. Effects of crystal orientation and temperature on the deformation mechanism and mechanical property of Cu nanowire[J]. Micro Nano Lett., 2020,15(4):261-265. doi: 10.1049/mnl.2019.0559

    13. [13]

      Ma C C, Xue C, Chu Z B, Yang Q H, Li S, Yang B W. Effect of tensile rate on structural transformation and dislocation of magnesium single crystal based on molecular dynamics[J]. Mater. Today Commun., 2022,33104649. doi: 10.1016/j.mtcomm.2022.104649

    14. [14]

      Xing Z Y, Fan H D, Kang G Z. Molecular dynamics simulations on the intergranular crack propagation of magnesium bicrystals[J]. Comput. Mater. Sci., 2022,210111058. doi: 10.1016/j.commatsci.2021.111058

    15. [15]

      Wang D X, Zhao J W, Hu S, Yin X, Liang S, Liu Y H, Deng S Y. Where, and how, does a nanowire break?[J]. Nano Lett., 2007,7(5):1208-1212. doi: 10.1021/nl0629512

    16. [16]

      Wang F Y, Sun W, Gao Y J, Liu Y H, Zhao J W, Sun C Q. Investigation on the most probable breaking behaviors of copper nanowires with the dependence of temperature[J]. Comput. Mater. Sci., 2013,67:182-187. doi: 10.1016/j.commatsci.2012.07.048

    17. [17]

      Liu Y H, Wang F Y, Zhao J W, Jiang L Y, Kiguchi M, Murakoshi K. Theoretical investigation on the influence of temperature and crystallographic orientation on the breaking behavior of copper nanowire[J]. Phys. Chem. Chem. Phys., 2009,11(30):6514-6519. doi: 10.1039/b902795e

    18. [18]

      Liu Y H, Zhao J W. The size dependence of the mechanical properties and breaking behavior of metallic nanowires: A statistical description[J]. Comput. Mater. Sci., 2011,50(4):1418-1424. doi: 10.1016/j.commatsci.2010.11.026

    19. [19]

      ZHAO J W, LI R, CHENG N, HOU J. Influence of the initial structure of silver nanowires on tensile deformation and fracture distribution[J]. Scientia Sinica Technologica, 2018,48(2):143-153.

    20. [20]

      LI R, ZHAO J W, HOU J, HE Y Y, CHENG N. Influence of convex-concave microstructures on initial deformation in metal nanowires[J]. Chem. J. Chinese Universities, 2018,39(3):514-520.

    21. [21]

      ZHAO J W, SHEN K Y, YU X H, HOU J. Temperature dependence and correlation of initial microstructural defects and breaking[J]. Chinese J. Inorg. Chem., 2023,39(6):1193-1207.  

    22. [22]

      Hockney R W, Eastwood J W. Computer simulation using particles[J]. SIAM Rev., 1983,25(3):425-426. doi: 10.1137/1025102

    23. [23]

      Morales J J, Rull L F, Toxvaerd S. Efficiency test of the traditonal MD and the link-cell methods[J]. Comput. Phys. Commun., 1989,56(2):129-134. doi: 10.1016/0010-4655(89)90013-1

    24. [24]

      Rapaport D C. The art of molecular dynamics simulation. 2nd ed. Cambridge: Cambridge university press, 2004: 90-95

    25. [25]

      Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations[J]. Phys. Rev. B, 1999,59(5):3393-3407. doi: 10.1103/PhysRevB.59.3393

    26. [26]

      Johnson R A. Relationship between defect energies and embedded-atom-method parameters[J]. Phys. Rev. B, 1988,37(11):6121-6125. doi: 10.1103/PhysRevB.37.6121

    27. [27]

      Johnson R A. Alloy models with the embedded-atom method[J]. Phys. Rev. B, 1989,39(17):12554-12559. doi: 10.1103/PhysRevB.39.12554

    28. [28]

      Shen K Y, Cheng N, Zhao J W, Hou J. Correlation between the breaking behavior and the initial microstructural defects of the metallic nanowires: An approach from statistical analysis[J]. Comput. Mater. Sci., 2022,213111486. doi: 10.1016/j.commatsci.2022.111486

    29. [29]

      Zhao J W, Murakoshi K, Yin X, Kiguchi M, Guo Y, Wang N, Liang S, Liu H M. Dynamic characterization of the postbreaking behavior of a nanowire[J]. J. Phys. Chem. C, 2008,112(50):20088-20094. doi: 10.1021/jp8055448

    30. [30]

      Wu H A. Molecular dynamics study of the mechanics of metal nanowires at finite temperature[J]. Eur. J. Mech. A-Solids, 2006,25(2):370-377. doi: 10.1016/j.euromechsol.2005.11.008

    31. [31]

      Kelchner C L, Plimpton S J, Hamilton J C. Dislocation nucleation and defect structure during surface indentation[J]. Phys. Rev. B, 1998,58(17):11085-11088. doi: 10.1103/PhysRevB.58.11085

    32. [32]

      Settem M, Islam M, Kanjarla A K. On the effect of relative stabilities of FCC-like and HCP-like atoms on structure of FCC silver nanoclusters[J]. Comput. Mater. Sci., 2018,148:266-271. doi: 10.1016/j.commatsci.2018.02.051

    33. [33]

      Ester M, Kriegel H P, Sander J, Xu X W. A density-based algorithm for discovering clusters in large spatial databases with noise// Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996,96(34): 226-231

    34. [34]

      Sun Y L, Sun W, Fu Y Q, Wang F Y, Gao Y J, Zhao J W. The deformation behaviors of silver nanowires including 3D defects under tension[J]. Comput. Mater. Sci., 2013,79:63-68. doi: 10.1016/j.commatsci.2013.06.004

    35. [35]

      Zhan H F, Gu Y T, Yan C, Feng X Q, Yarlagadda P K D V. Numerical exploration of plastic deformation mechanisms of copper nanowires with surface defects[J]. Comput. Mater. Sci., 2011,50(12):3425-3430. doi: 10.1016/j.commatsci.2011.07.004

    36. [36]

      Cao A J, Wei Y G. Atomistic simulations of the mechanical behavior of fivefold twinned nanowires[J]. Phys. Rev. B, 2006,74(21)214108. doi: 10.1103/PhysRevB.74.214108

    37. [37]

      Deng C, Sansoz F. Near-ideal strength in gold nanowires achieved through microstructural design[J]. Acs Nano, 2009,3(10):3001-3008. doi: 10.1021/nn900668p

    38. [38]

      Deng C, Sansoz F. Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires[J]. Nano Lett., 2009,9(4):1517-1522. doi: 10.1021/nl803553b

    39. [39]

      WANG X X, ZHAO J W, YU G. Molecular dynamics simulation of the combined influence of pores and twin boundaries on the deformation behavior of silver nanowires[J]. Acta Phys.-Chim. Sin., 2017,33(9):1773-1780.

    40. [40]

      Tsuzuki H, Branicio P S, Rino J P. Structural characterization of deformed crystals by analysis of common atomic neighborhood[J]. Comput. Phys. Commun., 2007,177(6):518-523. doi: 10.1016/j.cpc.2007.05.018

    41. [41]

      Wang F Y, Gao Y J, Zhu T M, Zhao J W. Shock-induced breaking in the gold nanowire with the influence of defects and strain rates[J]. Nanoscale, 2011,3(4):1624-1631. doi: 10.1039/c0nr00797h

    42. [42]

      ZHAO J W, LI R, HOU J, CHENG N. The relationship between statistical distribution characteristics of nanowire fracture behavior and initial microscopic structures[J]. Scientia Sinica Technologica, 2018,48(7):719-728.

    43. [43]

      Sun J P, Fang L, Ma A B, Jiang J H, Han Y, Chen H W, Han J. The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation[J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2015,634:86-90. doi: 10.1016/j.msea.2015.03.034

    44. [44]

      Sainath G, Choudhary B K, Jayakumar T. Molecular dynamics simulation studies on the size dependent tensile deformation and fracture behaviour of body centred cubic iron nanowires[J]. Comput. Mater. Sci., 2015,104:76-83. doi: 10.1016/j.commatsci.2015.03.053

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    14. [14]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    17. [17]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    18. [18]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    19. [19]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    20. [20]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

Metrics
  • PDF Downloads(0)
  • Abstract views(364)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return