Citation: Yuhao SUN, Qingzhe DONG, Lei ZHAO, Xiaodan JIANG, Hailing GUO, Xianglong MENG, Yongmei GUO. Synthesis and antibacterial properties of silver-loaded sod-based zeolite[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169 shu

Synthesis and antibacterial properties of silver-loaded sod-based zeolite

Figures(12)

  • A series of sod-based zeolites (EMT, FAU, SOD) were synthesized by two-step method, and Ag+ was introduced by ion exchange method to obtain silver-loaded zeolite. X-ray diffraction (XRD) and scanning electron microscope (SEM) showed that the structure and grain size of the zeolite did not change significantly before and after ion exchange. It was proved by infrared (IR) and thermogravimetry (TG) that the silver bearing zeolite had good stability. The Ag+ release experiment and antibacterial activity test were carried out on the prepared silver-loaded zeolite, and the effects of zeolite type and grain size on antibacterial performance were investigated. The results showed that the cage structure of FAU and EMT zeolite had better antibacterial properties because they could store more Ag+, and the super cage structure of FAU zeolite had the best antibacterial properties. By comparing the antibacterial data of FAU zeolite with different grain sizes, it was found that the FAU zeolite with grain size of 100 nm had the best antibacterial performance and antibacterial life because of the abundant antibacterial active sites on the outer surface and the Ag+ could be stored and released continuously inside. The silver-loaded FAU zeolite with grain size of 10 nm had the fastest Ag+ release rate and the highest antibacterial efficiency due to its small grain size, large external specific surface area and short diffusion path. The factors affecting the antibacterial properties of silver-loaded zeolite were summarized.
  • 加载中
    1. [1]

      Durdu S, Arslanturk A, Aktug S L, Korkmaz K, Aktas S, Unal F, Yalcin E, Cavusoglu K A. Comparison study on bioactivity and antibacterial properties of Ag-, Cu- and Zn- deposited oxide coatings produced on titanium[J]. J. Mater. Sci., 2022,57:17203-17218. doi: 10.1007/s10853-022-07743-2

    2. [2]

      Prabagar C J, Anand S, Janifer M A, Pauline S, Theoder P A S. Effect of metal substitution (Zn, Cu and Ag) in cobalt ferrite nanocrystallites for antibacterial activities[J]. Mater. Today: Proc., 2021,44:1999-2006. doi: 10.1016/j.matpr.2020.12.119

    3. [3]

      Sedelnikova M B, Komarova E G, Sharkeev Y P, Ugodchikova A V, Mushtovatova L S, Karpova M R, Sheikin V V, Litvinova L S, Khlusov I A. Zn-, Cu- or Ag-incorporated micro-arc coatings on titanium alloys: Properties and behavior in synthetic biological media[J]. Surf. Coat. Technol., 2019,369:52-68. doi: 10.1016/j.surfcoat.2019.04.021

    4. [4]

      Liu C H, Luo L H, Liu L. Antibacterial effect and mechanism of silver-carried zirconium glycine-N,N-dimethylenephosphonate as a synergistic antibacterial agent[J]. Inorg. Chem. Commun., 2019,107107497. doi: 10.1016/j.inoche.2019.107497

    5. [5]

      Kiradzhiyska D, Batsalova T, Dzhambazov B, Mancheva R. In vitro biocompatibility evaluation of anodic alumina substrates with electrochemically embedded silver[J]. Rev. Chim., 2020,71(10):81-88. doi: 10.37358/RC.20.10.8352

    6. [6]

      Silva-Holguín P N, Reyes-López S Y. Alumina-hydroxyapatite-silver spheres with antibacterial activity[J]. Dose-Response, 2021,19:12532-12538.

    7. [7]

      Dassanayake T M, Dassanayake A C, Abeydeera N, Pant B D, Jaroniec M, Kim M H, Huang S D. An aluminum lining to the dark cloud of silver resistance: Harnessing the power of potent antimicrobial activity of γ-alumina nanoparticles[J]. Biomater. Sci., 2021,9:7996-8006. doi: 10.1039/D1BM01233A

    8. [8]

      Qian G W, Zhang L M, Liu X D, Wu S D, Peng S P, Shuai C J. Silver-doped bioglass modified scaffolds: A sustained antibacterial efficacy[J]. Mater. Sci. Eng. C, 2021,129112425. doi: 10.1016/j.msec.2021.112425

    9. [9]

      Kukushkina E A, Hossain S I, Sportelli M C, Ditaranto N, Picca R A, Cioffi N. Ag-based synergistic antimicrobial composites[J]. A critical review. Nanomaterials, 2021,11(7)1687.

    10. [10]

      Vishnuvarthanan M, Rajeswari N. Food packaging: Pectin-laponite-Ag nanoparticle bionanocomposite coated on polypropylene shows low O2 transmission, low Ag migration and high antimicrobial activity[J]. Environ. Chem. Lett., 2019,17:439-445. doi: 10.1007/s10311-018-0770-3

    11. [11]

      Payami R, Ghorbanpour M, Jadid A P. Antibacterial silver-doped bioactive silica gel production using molten salt method[J]. J. Nanostructure Chem., 2016,6:215-221. doi: 10.1007/s40097-016-0193-2

    12. [12]

      Altintig E, Arabaci G, Altundag H. Preparation and characterization of the antibacterial efficiency of silver loaded activated carbon from corncobs[J]. Surf. Coat. Technol., 2016,304:63-67. doi: 10.1016/j.surfcoat.2016.06.077

    13. [13]

      Li Y Z, Tan Q Q, Li T T, Tan Y Z, Yang G J, Huang Y, Xing E H, Zhang X W, Chen Q. Ultrasmall Ag clusters in situ encapsulated into silicalite-1 zeolite with controlled release behavior and enhanced antibacterial activity[J]. Microporous Mesoporous Mat., 2022,330:1-9.

    14. [14]

      Mintcheva N, Panayotova M, Gicheva G, Gemishev O, Tyuliev G. Effect of exchangeable ions in natural and modified zeolites on Ag content, Ag nanoparticle formation and their antibacterial activity[J]. Materials, 2021,144153. doi: 10.3390/ma14154153

    15. [15]

      Torkian N, Bahrami A, Hosseini-Abari A, Momeni M M, Abdolkarimi-Mahabadi M, Bayat A, Hajipour P, Rourani H A, Abbasi M S, Torkian S, Wen Y P, Mehr M Y, Hojjati-Najafabadi A. Synthesis and characterization of Ag-ion-exchanged zeolite/TiO2 nanocomposites for antibacterial applications and photocatalytic degradation of antibiotics[J]. Environ. Res., 2022,207112157. doi: 10.1016/j.envres.2021.112157

    16. [16]

      Fonseca A M, Neves I C. Study of silver species stabilized in different microporous zeolites[J]. Microporous Mesoporous Mat., 2013,181:83-87. doi: 10.1016/j.micromeso.2013.07.018

    17. [17]

      Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: Nano-antimicrobial materials[J]. Evid. Based Complementary Altern. Med., 2015246012.  

    18. [18]

      Miao H, Teng Z Y, Wang S C, Xu L Y, Wang C Y, Chong H. Recent advances in the disinfection of water using nanoscale antimicrobial materials[J]. Adv. Mater. Technol., 2019,4(5)1800213. doi: 10.1002/admt.201800213

    19. [19]

      Weir E, Lawlor A, Whelan A, Regan F. The use of nanoparticles in anti-microbial materials and their characterization[J]. Analyst, 2008,133(7):835-845. doi: 10.1039/b715532h

    20. [20]

      Awala H, Kunjir S M, Vicente A, Gilson J P, Valtchev V, Seblani H, Retoux R, Lakiss L, Fernandez C, Bedard R, Abdo S, Bricker J, Mintova S. Crystallization pathway from highly viscous colloidal suspension to ultra-small FAU zeolite nanocrystals[J]. J. Mater. Chem. A, 2021,9:17492-17501. doi: 10.1039/D1TA02781F

    21. [21]

      Ng E P, Goupil J M, Vicente A, Fernandez C, Retoux R, Valtchev V, Mintova S. Nucleation and crystal growth features of EMT-type zeolite synthesized from an organic-template-free system[J]. J. Am. Chem. Soc., 2012,24(24):4758-4765.

    22. [22]

      National Development and Reform Commission. Performance and Evaluation of Inorganic Antibacterial Agent: HG/T 3794—2005. Beijing: Standards Press of China, 2005.

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    5. [5]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    10. [10]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    13. [13]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    14. [14]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    15. [15]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    18. [18]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    19. [19]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    20. [20]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

Metrics
  • PDF Downloads(0)
  • Abstract views(246)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return