Citation: Jinzeng XU, Hui GAO, Guoqing CHEN, Keke WANG, Jinhui HU. Luminescence properties of K+ doped double perovskite Cs2AgInCl6[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 405-411. doi: 10.11862/CJIC.20230149 shu

Luminescence properties of K+ doped double perovskite Cs2AgInCl6

Figures(8)

  • K+ doped double perovskite Cs2AgInCl6 nanomaterial was prepared by solid phase ball milling method, which is environmentally friendly without ligands. The crystal structure was studied by X-ray diffraction and Raman spectrum, and the luminescence properties were studied by excitation spectrum, emission spectrum, and time-resolved spectrum. The results show that the Cs2AgInCl6 is a cubic crystal, which belongs to Fm3m space group. Due to parity-forbidden transition, the photoluminescence quantum yield (PLQY) is low, less than 0.1%. When K+ doping is less than 60%, it mainly replaces Ag+, which causes lattice expansion of Cs2AgInCl6, eliminates inversion symmetry of lattice structure, breaks parity forbidden transition, and enhances photoluminescence intensity of Cs2AgInCl6. The optimal doping ratio was 40%, the center wavelength of Cs2Ag0.6K0.4InCl6 was 640 nm, the half-height width was 180 nm, the average fluorescence lifetime was 29.2 ns and the PLQY reached 10.5%. When the doping ratio of K+ exceeds 60%, K+ begins to replace the position of Cs+, which results in the presence of cubic phase Cs2-xK1+x-yAgyInCl6 and monoclinic phase Cs2-xK1+xInCl6. These products are dominated by non-radiative recombination due to strong electron-phonon coupling.
  • 加载中
    1. [1]

      WEI J, ZHAO Q, LI H, SHI C L, TIAN J J, CAO G Z, YU D P. Perovskite solar cells: Promise of photovoltaics[J]. Scientia Sinica Technologica, 2014,44:801-821.

    2. [2]

      GUO W M, ZHONG M. Research progress on preparation technology and stability of perovskite solar cells[J]. Chinese J. Inorg Chem., 2017,33(7):1097-1118.

    3. [3]

      PI H H, LI G H, ZHOU B L, CUI Y X. Progress of high-efficiency perovskite quantum dot light-emitting diodes[J]. Chin. J. Lumin., 2021,42(5):650-667. doi: 10.37188/CJL.20200406

    4. [4]

      Assadi M K, Bakhoda S, Saidur R, Hanaei H. Recent progress in perovskite solar cells[J]. Renew. Sust. Energ. Rev., 2018,81:2812-2822. doi: 10.1016/j.rser.2017.06.088

    5. [5]

      LIU Y Z, LI G H, CUI Y X, JI T, HAO Y Y. Research progress in perovskite photodetectors[J]. Laser Optoelectron. Prog., 2019,56(1)010001.

    6. [6]

      Liu R Z, Xu K. Blue perovskite light-emitting diodes (LEDs): A minireview[J]. Instrum. Sci. Technol., 2020,48(6):616-636. doi: 10.1080/10739149.2020.1762643

    7. [7]

      Abd Mutalib M, Ludin N A, Ruzalman N A A N, Barrioz V, Sepeai S, Teridi M A M, Su'ait M S, lbrahim M A, Sopian K. Progress towards highly stable and lead‑free perovskite solar cells[J]. Mater. Renew. Sustain. Energy, 2018,7(7):1-13.

    8. [8]

      Ren M, Qian X F, Chen Y T, Wang T F, Zhao Y X. Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics[J]. J. Hazard. Mater., 2022,426127848. doi: 10.1016/j.jhazmat.2021.127848

    9. [9]

      Dave K, Fang M H, Bao Z, Fu H T, Liu R S. Recent developments in lead-free double perovskites: Structure, doping, and applications[J]. Chem.-Asian J., 2020,15(2):242-252. doi: 10.1002/asia.201901510

    10. [10]

      Liu Y, Nag A, Manna L, Xia Z G. Lead-Free double perovskite Cs2AgInCl6[J]. Angew. Chem.-Int. Ed., 2021,60(21):11592-11603. doi: 10.1002/anie.202011833

    11. [11]

      Li K K, Li S, Zhang W L, Shi Z F, Wu D, Chen X, Lin P, Tian Y T, Li X J. Highly-efficient and stable photocatalytic activity of lead-free Cs2AgInCl6 double perovskite for organic pollutant degradation[J]. J. Colloid Interface Sci., 2021,596:376-383. doi: 10.1016/j.jcis.2021.03.144

    12. [12]

      Mohanty S, Mukherjee S. Effect of Jahn-Teller distortion on microstructural and dielectric properties of La based double perovskites[J]. J. Alloy. Compd., 2021,892162204.

    13. [13]

      Cong M Y, Zhang Q K, Yang B, Chen J S, Xiao J, Zheng D Y, Zheng T C, Zhang R L, Qing G Y, Zhang C F, Han K L. Bright triplet self-trapped excitons to dopant energy transfer in halide double-perovskite nanocrystals[J]. Nano Lett., 2021,21(20):8671-8678. doi: 10.1021/acs.nanolett.1c02653

    14. [14]

      Zhou J, Xia Z G, Molokeev M S, Zhang X W, Peng D S, Liu Q L. Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6[J]. J. Mater. Chem. A, 2017,5(29):15031-15037. doi: 10.1039/C7TA04690A

    15. [15]

      Arfin H, Kaur J, Sheikh T, Chakraborty S, Nag A. Bi3+-Er3+ and Bi3+-Yb3+ codoped Cs2AgInCl6 double perovskite near-infrared emitters[J]. Angew. Chem.-Int. Ed., 2020,59(28):11307-11311. doi: 10.1002/anie.202002721

    16. [16]

      Liu Y, Molokeev M S, Xia Z G. Lattice doping of lanthanide ions in Cs2AgInCl6 nanocrystals enabling tunable photoluminescence[J]. Energy Mater. Adv., 20212585274.

    17. [17]

      Zhao F Y, Song Z, Zhao J, Liu Q L. Double perovskite Cs2AgInCl6: Cr3+: Broadband and near-infrared luminescent materials[J]. Inorg. Chem. Front., 2019,6(12):3621-3628. doi: 10.1039/C9QI00905A

    18. [18]

      Nandha K N, Nag A. Synthesis and luminescence of Mn-doped Cs2AgInCl6 double perovskites[J]. Chem. Commun., 2018,54(41):5205-5208. doi: 10.1039/C8CC01982G

    19. [19]

      Luo J J, Wang X M, Li S R, Liu J, Guo Y M, Niu G D, Yao L, Fu Y H, Gao L, Dong Q S, Zhao C Y, Leng M Y, Ma F S, Liang W X, Wang L D, Jin S Y, Han J B, Zhang L J, Etheridge J, Wang J B, Yan Y F, Sargent E H, Tang J. Efficient and stable emission of warm-white light from lead-free halide double perovskites[J]. Nature, 2018,563:541-545. doi: 10.1038/s41586-018-0691-0

    20. [20]

      Vashishtha P, Griffith , B E, Fang Y N, Jaiswal A, Nutan G V, Bartók A P, White T, Hanna J V. Elucidation of the structural and optical properties of metal cation (Na+, K+, and Bi3+) incorporated Cs2AgInCl6 double perovskite nanocrystals[J]. J. Mater. Chem. A, 2022,10(7):3562-3578. doi: 10.1039/D1TA08263A

    21. [21]

      Siddique H, Xu Z L, Li X D, Saeed S, Liang W T, Wang X Q, Gao C, Dai R C, Wang Z P, Zhang Z M. Anomalous octahedron distortion of Bi-Alloyed Cs2AgInCl6 crystal via XRD, Raman, Huang-Rhys factor, and photoluminescence[J]. J. Phys. Chem. Lett., 2020,11(22):9572-9578. doi: 10.1021/acs.jpclett.0c02852

    22. [22]

      Zhu D X, Zaffalon M L, Zito J, Cova F, Meinardi F, De Trizio L, Infante I, Brovelli S, Manna L. Sb-doped metal halide nanocrystals: A 0D versus 3D comparison[J]. ACS Energy Lett., 2021,6(6):2283-2292. doi: 10.1021/acsenergylett.1c00789

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    3. [3]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    13. [13]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    14. [14]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    15. [15]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    16. [16]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    17. [17]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    18. [18]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    19. [19]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    20. [20]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(0)
  • Abstract views(367)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return