Citation: Silu WANG, Fengfeng ZHANG, Cheng ZHANG, Xiao WANG, Long TANG, Erlin YUE, Jijiang WANG, Xiangyang HOU. Design and synthesis of Eu3+/Tb3+-functionalized coordination polymers as visible fluorescent probes for trace monitoring Zr4+, Fe3+, Cr2O72-, HPO42- and identifying fingerprints[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 441-450. doi: 10.11862/CJIC.20230145 shu

Design and synthesis of Eu3+/Tb3+-functionalized coordination polymers as visible fluorescent probes for trace monitoring Zr4+, Fe3+, Cr2O72-, HPO42- and identifying fingerprints

  • Corresponding author: Xiangyang HOU, houxiangyang7@126.com
  • Received Date: 17 April 2023
    Revised Date: 1 November 2023

Figures(5)

  • The isomorphic terbium and europium coordination polymers (CPs) {[Eu(PLIA)1.5(H2O)2] ·H2O}n (1) and {[Tb(PLIA)1.5(H2O)2]·H2O}n (2), where H2PLIA=5-((pyridin-4-yl-methyl)oxy)benzene-1,3-dicarboxylic acid, were synthesized by using aromatic π-conjugated and nitrogen-containing organic linkers. The structure determination, characterization, and fluorescence trace identification of the CPs were studied. The two isomorphic complexes have an ideal 3D frame structure and their chemical stability is enhanced by weak interactions such as ππ packing and hydrogen bonds. The characterization shows that CPs 1 and 2 have good fluorescence deletion properties, crystallinity, thermodynamic stability, and structural integrity, and can be used as fluorescence sensing materials. 1 and 2 have fluorescence recognition ability for Zr4+, Cr2O72- and Fe3+, HPO42- in aqueous solution, respectively, with good selectivity and high sensitivity. The detection limits of these four ions by 1 and 2 were 0.139 μmol·L-1 (1, Zr4+), 0.626 μmol·L-1 (1, Cr2O72-), 0.430 μmol·L-1 (2, Fe3+), 1.36 μmol·L-1 (2, HPO42-), respectively. The fluorescence quenching mechanism of 1 and 2 as probes was investigated in detail. More interestingly, the two complexes have potential fingerprint recognition properties. Their fluorescent fingerprint patterns were clear and coherent, and the details were obvious and could be clearly observed.
  • 加载中
    1. [1]

      Golden H E, Evenson G R, Christensen J R, Lane C R. Dvancing watershed legacy nitrogen modeling to improve global water quality[J]. Environ. Sci. Technol., 2023,57:2691-2697. doi: 10.1021/acs.est.2c06983

    2. [2]

      Melanie W, Melitza C M, Graciela R T, Rodriguez R A, Hernandez M, Fernando L R O, Korak J A. Water quality in Puerto Rico after Hurricane Maria: Challenges associated with water quality assessments and implications for resilience[J]. ACS ES&T Wat., 2023,3:354-365.

    3. [3]

      Zhu S Y, Yan B. A novel sensitive luminescent probe of S2O82- and Fe3+ based on covalent post-functionalization of a zirconium(Ⅳ) metal-organic framework[J]. Dalton Trans., 2018,47:11586-11592. doi: 10.1039/C8DT02051E

    4. [4]

      Wang K, Hu X L, Li X, Su Z M, Zhou E L. Solvent induced two Cd-MOFs as luminescent sensors for picric acid, Fe3+ and Cr2O72-[J]. J. Solid State Chem., 2021,298122128. doi: 10.1016/j.jssc.2021.122128

    5. [5]

      Wang X, Han Y, Han X X, Hou X Y, Wang J J, Fu F. Highly selective and sensitive detection of Hg2+, Cr2O72-, and nitrobenzene/2,4-dinitrophenol in water via two fluorescent Cd-CPs[J]. J. Solid State Chem., 2022,315123523. doi: 10.1016/j.jssc.2022.123523

    6. [6]

      Wang X, Li B, Wu Y P, Tsamis A, Yu H G, Liu S, Zhao J, Li Y S, Li D S. Investigation on the component evolution of a tetranuclear nickel-cluster-based metal-organic framework in an electrochemical oxidation reaction[J]. Inorg. Chem., 2020,59:4764-4771. doi: 10.1021/acs.inorgchem.0c00024

    7. [7]

      García-Mesa J, Montoro-Leal P, Maireles-Rivas S, Guerrero M L, Alonso E V. Sensitive determination of mercury by magnetic dispersive solid-phase extraction combined with flow-injection-cold vapour-graphite furnace atomic absorption spectrometry[J]. J. Anal. At. Spectrom., 2021,36:892-899. doi: 10.1039/D0JA00516A

    8. [8]

      Perelonia K B S, Benitez K C D, Banicod R J S, Tadifa G C, Cambia F D, Montojo U M. Validation of an analytical method for the determination of cadmium, lead and mercury in fish and fishery resources by graphite furnace and cold vapor atomic absorption spectrometry[J]. Food Control, 2021,130108363. doi: 10.1016/j.foodcont.2021.108363

    9. [9]

      Chen Y J, He M, Chen B B, Hu B. Thiol-grafted magnetic polymer for preconcentration of Cd, Hg, Pb from environmental water followed by inductively coupled plasma mass spectrometry detection[J]. Spectroc. Acta Pt. B-Atom. Spectr., 2021,177106071. doi: 10.1016/j.sab.2021.106071

    10. [10]

      Wei J H, Yi J W, Han M L, Li B, Liu S, Wu Y P, Ma L F, Li D S. A water-stable terbium(Ⅲ)-organic framework as a chemosensor for inorganic ions, nitro-containing compounds and antibiotics in aqueous solutions[J]. Chem. Asian J., 2019,14:3694-3701. doi: 10.1002/asia.201900706

    11. [11]

      Hu R, Zhang X, Chi K N, Yang T, Yang Y H. Bifunctional MOFs-based ratiometric electrochemical sensor for multiplex heavy metal ions[J]. ACS Appl. Mater. Interfaces, 2020,12:30770-30778. doi: 10.1021/acsami.0c06291

    12. [12]

      Wang Y, Ma J X, Zhang Y, Xu N, Wang X L. A series of cobalt-based coordination polymer crystalline materials as highly sensitive electrochemical sensors for detecting trace Cr(Ⅵ), Fe(Ⅲ) ions, and ascorbic acid[J]. Cryst. Growth Des., 2021,21:4390-4397. doi: 10.1021/acs.cgd.1c00311

    13. [13]

      Sun Y, Zhang N, Guan Q L, Liu C H, Li B, Zhang K Y, Li G H, Xing Y H, Bai F Y, Sun L X. Sensing of Fe3+ and Cr2O72- in water and white light: Synthesis, characterization, and fluorescence properties of a crystalline bismuth-1,3,5-benzenetricarboxylic acid framework[J]. Cryst. Growth Des., 2019,19:7217-7229. doi: 10.1021/acs.cgd.9b01098

    14. [14]

      Cai D G, Qiu C Q, Zhu Z H, Zheng T F, Wei W J, Chen J L, Liu S J, Wen H R. Fabrication and DFT calculation of amine-functionalized metal-organic framework as a turn-on fluorescence sensor for Fe3+ and Al3+ ions[J]. Inorg. Chem., 2022,61:14770-14777. doi: 10.1021/acs.inorgchem.2c02195

    15. [15]

      WANG Z W, WU H D, Yaseen M, LIANG A L, LIU H, NING Z A, WANG S, WANG G, QUAN W, WANG H. Two-dimensional coordination polymer[Tb(1,4-bdc)1.5(phen)(H2O)]n: Synthesis, crystal structure and luminescent detection of Fe3+[J]. Chinese J. Inorg. Chem., 2022,38(3):551-558. doi: 10.11862/CJIC.2022.056

    16. [16]

      WANG X Q, MA X H, FENG D D, TANG J, WU D. Synthesis of a water-stable Zn2+-based metal-organic framework for luminescence detecting Fe3+ and 2,6-dichloro-4-nitroaniline[J]. Chinese J. Inorg. Chem., 2022,38(1):137-144. doi: 10.11862/CJIC.2022.015

    17. [17]

      Hakansson K, Coorey R V, Zubarev R A, Talrose V L, Hakansson P J. Low-mass ions observed in plasma desorption mass spectrometry of high explosives[J]. J. Mass Spectrom., 2000,35:337-346. doi: 10.1002/(SICI)1096-9888(200003)35:3<337::AID-JMS940>3.0.CO;2-7

    18. [18]

      Qiang R B, Sun W M, Hou K M, Li Z P, Zhang J Y, Ding Y, Wang J Q, Yang S R. Electrochemical trimming of graphene oxide affords graphene quantum dots for Fe3+ detection[J]. ACS Appl. Nano Mater., 2021,4:5220-5229. doi: 10.1021/acsanm.1c00621

    19. [19]

      Benito-Pena E, Urraca J L, Moreno-Bondi M C. Quantitative determination of penicillin V and amoxicillin in feed samples by pressurized liquid extraction and liquid chromatography with ultraviolet detection[J]. J. Pharm. Biomed. Anal., 2009,49:289-294. doi: 10.1016/j.jpba.2008.11.016

    20. [20]

      Miao W N, Liu B, Li H, Zheng S J, Jiao H, Xu L. Fluorescent Eu3+/Tb3+ metal-organic frameworks for ratiometric temperature sensing regulated by ligand energy[J]. Inorg. Chem., 2022,61:14322-14332. doi: 10.1021/acs.inorgchem.2c02025

    21. [21]

      Wang S L, L Q, Zhang C, Wang X, Li S Y, Hou X Y, Tang L, Yue E L, Fu F, Wang J J. Fluorescence sensor based on highly stable Cd(Zn)-coordination polymers for efficient detection of Cr2O72-/Nitrobenzene and recognition mechanism[J]. J. Solid State Chem., 2022,316123492. doi: 10.1016/j.jssc.2022.123492

    22. [22]

      Fan M Y, Sun B, Li X, Pan Q Q, Sun J, Ma P F, Su Z M. Highly fluorescent cadmium based metal organic frameworks for rapid detection of antibiotic residues, Fe3+ and Cr2O72- ions[J]. Inorg. Chem., 2021,60:9148-9156. doi: 10.1021/acs.inorgchem.1c01165

    23. [23]

      Meng Z X, Yang F N, Wang X J, Shan W L, Liu D D, Zhang L Y, Yuan G Z. Trefoil-shaped metal-organic cages as fluorescent chemosensors for multiple detection of Fe3+, Cr2O72-, and antibiotics[J]. Inorg. Chem., 2023,62:1297-1305. doi: 10.1021/acs.inorgchem.2c03639

    24. [24]

      Mukherjee D, Pal A, Pal S C, Saha A, Das M C. A Highly selective MOF-based probe for turn-on luminescent detection of Al3+, Cr3+, and Fe3+ in solution and test paper strips through absorbance caused enhancement mechanism[J]. Inorg. Chem., 2022,61:16952-16962. doi: 10.1021/acs.inorgchem.2c03152

  • 加载中
    1. [1]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    2. [2]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    3. [3]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    6. [6]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    7. [7]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    8. [8]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    9. [9]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    12. [12]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    13. [13]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    14. [14]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    15. [15]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    16. [16]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    17. [17]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    18. [18]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    19. [19]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    20. [20]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

Metrics
  • PDF Downloads(0)
  • Abstract views(846)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return