Citation: Zenkin Kubra, Dalmaz Aslihan, Ozdincer Mesut, Durmus Sefa. Anion effect on magnetic and structural properties of green synthesized NiO nanoparticles via Ni-salt precursors in Salvia officinalis extract[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(2): 451-462. doi: 10.11862/CJIC.20230090 shu

Anion effect on magnetic and structural properties of green synthesized NiO nanoparticles via Ni-salt precursors in Salvia officinalis extract

  • Corresponding author: Zenkin Kubra, kubrazenkin@gmail.com
  • Received Date: 21 March 2023
    Revised Date: 3 November 2023

Figures(9)

  • Using a green synthesis method, Salvia officinalis extract was used as a reducing and capping agent to synthesize nickel oxide nanoparticles (NiO NPs). In addition, NiO NPs were synthesized using various precursors, and their morphologies were analyzed using scanning electron microscopy. The structures of NiO NPs were characterized using Fourier-transform infrared spectroscopy, and powder X-ray diffraction (PXRD). Their magnetic properties were measured using a vibrating sample magnetometer. PXRD studies showed that all synthesized NiO NPs exhibited a face-centered cubic phase with high crystallinity, and NiO formations with a high-purity phase were confirmed. As a result of magnetization studies, NiO NPs synthesized from three nickel salt precursors (acetate, chloride, and sulfate) exhibit superparamagnetic, soft ferromagnetic, and paramagnetic behaviors, respectively.
  • 加载中
    1. [1]

      Din M I, Nabi A G, Rani A, Aihetasham A, Mukhtar M. Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: Catalytic and antimicrobial potentials[J]. Environmental Nanotechnology, Monitoring & Management, 2018,9:29-36.

    2. [2]

      Guo H, Barnard A S. Naturally occurring iron oxide nanoparticles: Morphology, surface chemistry and environmental stability[J]. J. Mater. Chem. A, 2013,1(1):27-42. doi: 10.1039/C2TA00523A

    3. [3]

      Özdinçer M, Durmuş S, Dalmaz A. Magnetic spinel-type CoFe2O4 nanoparticles: Synthesis and investigation of structural, morphological properties[J]. Süleyman Demirel University Journal of Natural and Applied Sciences, 2017,21(2)311.

    4. [4]

      Bao Y, Sherwood J A, Sun Z. Magnetic iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging[J]. J. Mater. Chem. C, 2018,6(6):1280-1290. doi: 10.1039/C7TC05854C

    5. [5]

      Dalmaz A, Durmuş S, Dulger G, Dülger B. Synthesis and characterization of dimeric thio-Schiff bases by nano cerium oxide and examination of their antimicrobial activities[J]. Sakarya University Journal of Science, 2021,25(2):364-378. doi: 10.16984/saufenbilder.737671

    6. [6]

      Durmus S, Dalmaz A, Calıskan E, Dulger G. Synthesis and characterization of disulfide-schiff base derivatives and in vitro investigation of their antibacterial activity against multidrug-resistant Acinetobacter baumannii isolates: A new study[J]. Russ. J. Gen. Chem., 2018,88(2):305-311. doi: 10.1134/S1070363218020184

    7. [7]

      Park M H, Li J H, Kumar A, Li G, Yang Y. Doping of the metal oxide nanostructure and its influence in organic electronics[J]. Adv. Funct. Mater., 2009,19(8):1241-1246. doi: 10.1002/adfm.200801639

    8. [8]

      Durmus S, Dalmaz A, Ozdincer M, Sivrikaya S. Preparation of cerium oxide nanoparticles: An efficient catalyst to the synthesis of dimeric disulphide Schiff bases[J]. CBU J. Sci., 2017,13(1):25-30.

    9. [9]

      Wang S J, Wang Z Y, Zha Z G. Metal nanoparticles or metal oxide nanoparticles, an efficient and promising family of novel heterogeneous catalysts in organic synthesis[J]. Dalton Trans., 2009,43:9363-9373.

    10. [10]

      Dalmaz A, Durmuş S, Dülger G, Alpay M. Thio-Schiff bases derived from 2,2'-disulfanedianiline via nanocerium oxide: Antimicrobial effect and antiproliferative effects in Melanoma cells[J]. Turk. J. Chem., 2022,46(4):1055-1068. doi: 10.55730/1300-0527.3414

    11. [11]

      Chavali M S, Nikolova M P. Metal oxide nanoparticles and their applications in nanotechnology[J]. SN Appl. Sci., 2019,1(6)607. doi: 10.1007/s42452-019-0592-3

    12. [12]

      Guo T, Yao M S, Lin Y H, Nan C W. A comprehensive review on synthesis methods for transition-metal oxide nanostructures[J]. CrystEngComm, 2015,17(19):3551-3585. doi: 10.1039/C5CE00034C

    13. [13]

      Jafari A, Jahromi S P, Boustani K, Goh B T, Huang N M. Evolution of structural and magnetic properties of nickel oxide nanoparticles: Influence of annealing ambient and temperature[J]. J. Magn. Magn. Mater., 2019,469:383-390. doi: 10.1016/j.jmmm.2018.08.005

    14. [14]

      Diallo A, Kaviyarasu K, Ndiaye S, Mothudi B M, Ishaq A, Rajendran V, Maaza M. Structural, optical and photocatalytic applications of biosynthesized NiO nanocrystals[J]. Green Chem. Lett. Rev., 2018,11(2):166-175. doi: 10.1080/17518253.2018.1447604

    15. [15]

      Kumar M S S, Soundarya T L, Udayabhanu , Nagaraju G, Raghu G K, Rekha N D, Alharthi F A, Nirmala B. Multifunctional applications of nickel oxide (NiO) nanoparticles synthesized by facile green combustion method using Limonia acidissima natural fruit juice[J]. Inorg. Chim. Acta, 2021,515120059. doi: 10.1016/j.ica.2020.120059

    16. [16]

      Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii[J]. J. Photochem. Photobiol. B, 2018,190:86-97.

    17. [17]

      Maia A O G, Meneses C T, Menezes A S, Flores W H, Melo D M A, Sasaki J M. Synthesis and X-ray structural characterization of NiO nanoparticles obtained through gelatin[J]. J. Non-Cryst. Solids, 2006,352(32/33/34/35):3729-3733.

    18. [18]

      Deraz N M, Selim M M, Ramadan M. Processing and properties of nanocrystalline Ni and NiO catalysts[J]. Mater. Chem. Phys., 2009,113(1):269-275. doi: 10.1016/j.matchemphys.2008.07.021

    19. [19]

      Whitesides G M. Nanoscience, nanotechnology, and chemistry[J]. Small, 2005,1(2):172-179. doi: 10.1002/smll.200400130

    20. [20]

      Steinebach H, Kannan S, Rieth L, Solzbacher F. H2 gas sensor performance of NiO at high temperatures in gas mixtures[J]. Sens. Actuators B-Chem., 2010,151(1):162-168. doi: 10.1016/j.snb.2010.09.027

    21. [21]

      Amani-Beni Z, Nezamzadeh-Ejhieh A. NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor[J]. Anal. Chim. Acta, 2018,1031:47-59. doi: 10.1016/j.aca.2018.06.002

    22. [22]

      Adekunle A S, Oyekunle J A O, Oluwafemi O S, Joshua A O, Makinde W O, Ogunfowokan A O, Eleruja M A, Ebenso E E. Comparative catalytic properties of Ni(OH)2 and NiO nanoparticles towards the degradation of nitrite (NO2-) and nitric oxide (NO)[J]. Int. J. Electrochem. Sci., 2014,9(6):3008-3021. doi: 10.1016/S1452-3981(23)07987-7

    23. [23]

      Ichiyanagi Y, Wakabayashi N, Yamazaki J, Yamada S, Kimishima Y, Komatsu E, Tajima H. Magnetic properties of NiO nanoparticles[J]. Physica B, 2003,329-333(2):862-863.

    24. [24]

      Junqing L, Jingli S, Xi Y, Xiaoling Z, Zechao T, Quangui G, Lang L. Preparation and electrochemical properties of hollow nickel oxide fibers[J]. Int. J. Electrochem. Sci., 2012,7(3):2214-2220. doi: 10.1016/S1452-3981(23)13874-0

    25. [25]

      Mohammadyanı D, Hosseını S A, Sadrnezhaad S K. Characterization of nickel oxide nanoparticles synthesized via rapid microwave-assisted route[J]. International Journal of Modern Physics: Conference Series, 2012,5:270-276. doi: 10.1142/S2010194512002127

    26. [26]

      Xiang L, Deng X Y, Jin Y. Experimental study on synthesis of NiO nano-particles[J]. Scr. Mater., 2002,47:219-224. doi: 10.1016/S1359-6462(02)00108-2

    27. [27]

      Park B, Cairns E J. Electrochemical performance of TiO2 and NiO as fuel cell electrode additives[J]. Electrochem. Commun., 2011,13(1):75-77. doi: 10.1016/j.elecom.2010.11.017

    28. [28]

      Miri A, Mahabbati F, Najafidoust A, Miri M J, Sarani M. Nickel oxide nanoparticles: Biosynthesized, characterization and photocatalytic application in degradation of methylene blue dye[J]. Inorg. Nano-Met. Chem., 2022,52(1):122-131. doi: 10.1080/24701556.2020.1862226

    29. [29]

      Dehno K A. Solid state process for preparation of nickel oxide nanoparticles: Characterization and optical study[J]. Iran. J. Chem. Chem. Eng., 2016,35(3):17-20.

    30. [30]

      Nguyen K, Hoa N D, Hung C M, Le D T T, Duy N V, Hieu N V. A comparative study on the electrochemical properties of nanoporous nickel oxide nanowires and nanosheets prepared by a hydrothermal method[J]. RSC Adv., 2018,8(35):19449-19455. doi: 10.1039/C8RA02862A

    31. [31]

      Wang S F, Shi LY, Feng X, Ma S R. Eutectic assisted synthesis of nanocrystalline NiO through chemical precipitation[J]. Mater. Lett., 2007,61(7):1549-1551. doi: 10.1016/j.matlet.2006.07.076

    32. [32]

      Duraisamy N, Numan A, Fatin S O, Ramesh K, Ramesh S. Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application[J]. J. Colloid Interface Sci., 2016,471:136-144. doi: 10.1016/j.jcis.2016.03.013

    33. [33]

      Bazylko A, Granica S, Filipek A, Piwowarski J, Stefańska J, Osińska E, Kiss A K. Comparison of antioxidant, anti-inflammatory, antimicrobial activity and chemical composition of aqueous and hydroethanolic extracts of the herb of Tropaeolum majus L[J]. Ind. Crop. Prod., 2013,50:88-94. doi: 10.1016/j.indcrop.2013.07.003

    34. [34]

      Mateos D, Valdeza B, Castilloa J R, Nedeva N, Curiela M, Pereza O, Ariasb A, Tiznado H. Synthesis of high purity nickel oxide by a modified sol-gel method[J]. Ceram. Int., 2019,45(9):11403-11407. doi: 10.1016/j.ceramint.2019.03.005

    35. [35]

      Thema F T, Manikandan E, Gurib-Fakim A, Maaza M. Single phase bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract[J]. J. Alloy. Compd., 2016,657:655-661. doi: 10.1016/j.jallcom.2015.09.227

    36. [36]

      Thovhogi N, Diallo A, Gurib-Fakim A, Maaza M. Nanoparticles green synthesis by Hibiscus Sabdariffa flower extract: Main physical properties[J]. J. Alloy. Compd., 2015,647:392-396. doi: 10.1016/j.jallcom.2015.06.076

    37. [37]

      Thema F T, Beukes P, Gurib-Fakim A, Maaza M. Green synthesis of monteponite CdO nanoparticles by Agathosma betulina natural extract[J]. J. Alloy. Compd., 2015,646:1043-1048. doi: 10.1016/j.jallcom.2015.05.279

    38. [38]

      Molaei M J. Carbon quantum dots and their biomedical and therapeutic applications: A review[J]. RSC Adv., 2019,9(12):6460-6481. doi: 10.1039/C8RA08088G

    39. [39]

      Guo Y, Zhang J, Zhou D, Dong S. Fabrication of Ag/CDots/BiOBr ternary photocatalyst with enhanced visible-light driven photocatalytic activity for 4-chlorophenol degradation[J]. J. Mol. Liq., 2018,262(2017):194-203.

    40. [40]

      Tajika S, Dourandishb Z, Zhang K, Beitollahi H, Le Q V, Jang H W, Shokouhimehr M. Carbon and graphene quantum dots: A review on syntheses, characterization, biological and sensing applications for neurotransmitter determination[J]. RSC Adv., 2020,10(26):15406-15429. doi: 10.1039/D0RA00799D

    41. [41]

      Kar A, Ray A K. Synthesis of nano-spherical nickel by templating hibiscus flower petals[J]. Am. J. Nanosci. Nanotechnol., 2014,2(2):17-20. doi: 10.11648/j.nano.20140202.11

    42. [42]

      Bekem R, Durmuş S, Dalmaz A, Dulger G. Green synthesis of ZnO nanoparticles using Agaricus bisporus extract: Structural characterization and investigation of their biological activities[J]. Düzce University Journal of Science and Technology, 2023,11(2):551-562.

    43. [43]

      Gençay S N, Durmuş S, Dalmaz A, Dulger G. Green synthesis, structural characterization and investigation of biological activities of ZnO nanoparticles using chestnut honey from Düzce province[J]. Düzce University Journal of Science and Technology, 2023,11(3):1437-1445.

    44. [44]

      Ghorbani A, Esmaeilizadeh M. Pharmacological properties of Salvia officinalis and its components[J]. J. Tradit. Complement. Med., 2017,7(4):433-440. doi: 10.1016/j.jtcme.2016.12.014

    45. [45]

      Karık M, Sağlam Ü, Kürkçüoğlu A C. Some morphological and quality characteristics of sage (Salvia tomentosa Mill.) populations in South Marmara region[J]. Journal of Aegean Agricultural Research Institute, 2013,23(2):9-20.

    46. [46]

      Yağcıoğlu P. Optimization of antioxidant extraction from sage (Salvia officinalis L.) using different extraction methods. Istanbul: Istanbul Technical University, 2015.

    47. [47]

      Roy A, Bulut O, Some S, Mandal A K, Yilmaz M D. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity[J]. RSC Adv., 2019,9(5):2673-2702. doi: 10.1039/C8RA08982E

    48. [48]

      Takcı D K, Ozdenefe M S, Genc S. Green synthesis of silver nanoparticles with an antibacterial activity using Salvia officinalis aqueous extract[J]. J. Cryst. Growth, 2023,614127239. doi: 10.1016/j.jcrysgro.2023.127239

    49. [49]

      Ghazal S, Akbari A, Hosseini H A, Sabouri Z, Forouzanfar F, Khatami M, Darroudi M. Sol-gel biosynthesis of nickel oxide nanoparticles using Cydonia oblonga extract and evaluation of their cytotoxicity and photocatalytic activities[J]. J. Mol. Struct., 2020,1217128378. doi: 10.1016/j.molstruc.2020.128378

    50. [50]

      Kamli M R, Alzahrani E A, Albukhari S M, Ahmad A, Sabir J S M, Malik M A. Combination effect of novel bimetallic Ag-Ni nanoparticles with fluconazole against Candida albicans[J]. J. Fungi, 2022,8(7)733. doi: 10.3390/jof8070733

    51. [51]

      George G, Anandhan S. Synthesis and characterization of nickel oxide nanofibre webs with alcohol sensing characteristics[J]. RSC Adv., 2014,4(107):62009-62020. doi: 10.1039/C4RA11083H

    52. [52]

      Sudalai M K, Perumal P. Synthesis and characterization of NiO nanoparticles using egg white method[J]. J. Mater. Sci.-Mater. Electron., 2017,28(13):9612-9617. doi: 10.1007/s10854-017-6710-3

    53. [53]

      Nasseri M A, Ahrari F, Zakerinasab B. A green biosynthesis of NiO nanoparticles using aqueous extract of Tamarix serotina and their characterization and application[J]. Appl. Organomet. Chem., 2016,30(12):978-984. doi: 10.1002/aoc.3530

    54. [54]

      Zhou X F, Jiang C, Chen C, Luo H, Zhou K C, Zhang D. Morphology control and piezoelectric response of Na0.5Bi0.5TiO3 synthesized via a hydrothermal method[J]. CrystEngComm, 2016,18(8):1302-1310. doi: 10.1039/C5CE02248G

    55. [55]

      AlSalhi M S, Aziz M H, Atif M, Fatima M, Shaheen F, Devanesan S, Farooq W A. Synthesis of NiO nanoparticles and their evaluation for photodynamic therapy against HeLa cancer cells[J]. J. King Saud. Univ. Sci., 2020,32(2):1395-1402. doi: 10.1016/j.jksus.2019.11.033

    56. [56]

      Fereshteh Z, Salavati-Niasari M, Saberyan K, Hosseinpour-Mashkani S M, Tavakoli F. Synthesis of nickel oxide nanoparticles from thermal decomposition of a new precursor[J]. J. Clust. Sci., 2012,23(2):577-583. doi: 10.1007/s10876-012-0477-8

    57. [57]

      Srihasam S, Thyagarajan K, Korivi M, Lebaka V R, Mallem S P R. Phytogenic generation of NiO nanoparticles using Stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties[J]. Biomolecules, 2020,10(1)89. doi: 10.3390/biom10010089

    58. [58]

      Salavati-Niasari M, Sobhani A. Effect of nickel salt precursors on morphology, size, optical property and type of products (NiSe or Se) in hydrothermal method[J]. Opt. Mater., 2013,35:904-909. doi: 10.1016/j.optmat.2012.11.004

  • 加载中
    1. [1]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    2. [2]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    3. [3]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    4. [4]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    5. [5]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    6. [6]

      Yunjia Jiang Lingyao Wang Yuanbin Zhang . Anion pillared MOFs for challenging hydrocarbon separations. Chinese Journal of Structural Chemistry, 2024, 43(11): 100374-100374. doi: 10.1016/j.cjsc.2024.100374

    7. [7]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    8. [8]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    9. [9]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    10. [10]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    11. [11]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    12. [12]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    13. [13]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    14. [14]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    15. [15]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    16. [16]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    17. [17]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    18. [18]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    19. [19]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    20. [20]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

Metrics
  • PDF Downloads(0)
  • Abstract views(405)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return