Citation: Na LIU. Mechanism of the effect of carbon coating on high temperature cycle performance of LiFePO4[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2287-2294. doi: 10.11862/CJIC.2023.210 shu

Mechanism of the effect of carbon coating on high temperature cycle performance of LiFePO4

  • Received Date: 31 July 2023
    Revised Date: 15 November 2023

Figures(3)

  • To investigate mechanism of carbon coating on the high-temperature cycle performance of widely used LiFePO4/graphite batteries, two types of LiFePO4 cathode material with different carbon coating degrees were prepared. According to characterization results from X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), powder resistance, and coin cell, two types of LiFePO4 were almost identical with respect to the crystal structure, particle size, and specific capacity. Then LiFePO4/graphite pouch cells were prepared and cycled at 1C under 60 ℃. It turns out that carbon coating can improve capacity retention from 80.4% to 84.9% after 1 251 cycles. The capacity improvement for polarization capacity and thermodynamic capacity account for 76% and 24%, respectively. This demonstrates that the mechanism of carbon coating is to reduce the polarization capacity loss by forming integrated conducting networks. In contrast, carbon coating can not inhibit Fe dissolution directly. Instead, it may be an indirect interaction through the reduction of moisture.
  • 加载中
    1. [1]

      Gong Z L, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries[J]. Energy Environ. Sci, 2011,4:3223-3242. doi: 10.1039/c0ee00713g

    2. [2]

      LIU L S. Application status and development trend of lithium iron phosphate battery[J]. Chinese Battery Industry, 2021,25(5):263-265. doi: 10.3969/j.issn.1008-7923.2021.05.007

    3. [3]

      Dubarry M, Liaw B Y. Identify capacity fading mechanism in a commercial LiFePO4 cell[J]. J. Power Sources, 2009,194(1):541-549. doi: 10.1016/j.jpowsour.2009.05.036

    4. [4]

      Zhang Y C, Wang C Y, Tang X D. Cycling degradation of an automotive LiFePO4 lithium-ion battery[J]. J. Power Sources, 2011,196(3):1513-1520. doi: 10.1016/j.jpowsour.2010.08.070

    5. [5]

      Safari M, Delacourt C. Aging of a commercial graphite/LiFePO4 cell[J]. J. Electrochem. Soc., 2011,158(10):A1123-A1135. doi: 10.1149/1.3614529

    6. [6]

      Dubarry M, Truchot C, Liaw B Y. Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs[J]. J. Power Sources, 2014,258:408-419. doi: 10.1016/j.jpowsour.2014.02.052

    7. [7]

      Cao W P, Li J, Wu Z B. Cycle-life and degradation mechanism of LiFePO4-based lithium-ion batteries at room and elevated temperatures[J]. Ionics, 2016,22:1791-1799. doi: 10.1007/s11581-016-1703-4

    8. [8]

      Liang J L, Gan Y H, Yao M L, Li Y. Numerical analysis of capacity fading for a LiFePO4 battery under different current rates and ambient temperatures[J]. Int. J. Heat Mass Transf., 2021,165120615. doi: 10.1016/j.ijheatmasstransfer.2020.120615

    9. [9]

      ZHENG Y, LI J L, WANG X D. Capacity fading mechanism of LiFePO4/graphite power battery at high temperature[J]. Mater. Rep., 2016,30(10):15-18.  

    10. [10]

      Amine K, Liu J, Belharouak I. High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells[J]. Electrochem. Commun., 2005,7(7):669-673. doi: 10.1016/j.elecom.2005.04.018

    11. [11]

      Chang H H, Wu H C, Wu N L. Enhanced high-temperature cycle performance of LiFePO4/carbon batteries by an ion-sieving metal coating on negative electrode[J]. Electrochem. Commun., 2008,10(12):1823-1826. doi: 10.1016/j.elecom.2008.09.022

    12. [12]

      Doeff M M, Hu Y Q, McLarnon F, Kostecki R. Effect of surface carbon structure on the electrochemical performance of LiFePO4[J]. Electrochem. Solid-State Lett., 2003,6(10):A207-A209. doi: 10.1149/1.1601372

    13. [13]

       

    14. [14]

      Meng Y S, Xia J, Wang L, Wang G R, Zhu F L, Zhang Y. A comparative Study on LiFePO4/C by in-situ coating with different carbon sources for high-performance lithium batteries[J]. Electrochim. Acta, 2018,261:96-103. doi: 10.1016/j.electacta.2017.12.127

    15. [15]

      Cho Y D, Fey G T K, Kao H M. The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes[J]. J. Power Sources, 2009,189:256-262. doi: 10.1016/j.jpowsour.2008.09.053

    16. [16]

      Ong C W, Lin Y K, Chen J S. Effect of various organic precursors on the performance of LiFePO4/C composite cathode by coprecipitation method[J]. J. Electrochem. Soc., 2007,154(6):A527-A533. doi: 10.1149/1.2720714

    17. [17]

      Choi D, Kumta P N. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries[J]. J. Power Sources, 2007,163:1064-1069. doi: 10.1016/j.jpowsour.2006.09.082

    18. [18]

      Kim K, Jeong J H, Kim I J, Kim H S. Carbon coatings with olive oil, soybean oil and butter on nano-LiFePO4[J]. J. Power Sources, 2007,167(2):524-528. doi: 10.1016/j.jpowsour.2007.01.097

    19. [19]

      Hsu K F, Tsay S Y, Hwang B J. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route[J]. J. Mater. Chem., 2004,14:2690-2695. doi: 10.1039/B406774F

    20. [20]

      Zhi X K, Liang G C, Wang L, Ou Q X, Gao L M, Jie X F. Optimization of carbon coatings on LiFePO4: Carbonization temperature and carbon content[J]. J. Alloy. Compd., 2010,503:370-374. doi: 10.1016/j.jallcom.2010.02.173

    21. [21]

      ZHANG N, LIU Y C, CHEN C C, ZHU Z Q, TAO Z L, CHEN J. Research progress in carbon coating on LiFePO4 cathode materials for lithium ion batteries[J]. J. Electrochem., 2015,21(3):201-210.  

    22. [22]

      HU G R, PENG Q Y, PENG Z D, CAO Y B, DU K. Comparison on properties of lithium iron phosphate/graphene composite prepared by two methods[J]. Chinese J. Inorg. Chem., 2015,31(6):1153-1158. doi: 10.11862/CJIC.2015.167

    23. [23]

      TONG H, HU G H, HU G R, PENG Z D, ZHANG X L. Synthesis of LiFePO4/C cathode material for lithium-ion battery[J]. Chinese J. Inorg. Chem., 2006,22(12):2159-2164.  

    24. [24]

      Huang Y G, Zheng F H, Zhang X H, Li Q Y, Wang H Q. Effect of carbon coating on cycle performance of LiFePO4/C composite cathodes using Tween80 as carbon source[J]. Electrochim. Acta, 2014,130:740-747. doi: 10.1016/j.electacta.2014.03.091

    25. [25]

      Koltypin M, Aurbach D, Nazar L, Ellis B. On the stability of LiFePO4 olivine cathodes under various conditions (electrolyte solutions, temperatures)[J]. Electrochem. Solid-State Lett., 2007,10(2):A40-A44. doi: 10.1149/1.2403974

    26. [26]

      Koltypin M, Aurbach D, Nazar L, Ellis B. More on the performance of LiFePO4 electrodes—The effect of synthesis route, solution composition, aging, and temperature[J]. J. Power Sources, 2007,174(2):1241-1250. doi: 10.1016/j.jpowsour.2007.06.045

    27. [27]

      Heider U, Oesten R, Jungnitz M. Challenge in manufacturing electrolyte solutions for lithium and lithium ion batteries quality control and minimizing contamination level[J]. J. Power Sources, 1999,81-82:119-122. doi: 10.1016/S0378-7753(99)00142-1

    28. [28]

      Gaberscek M, Moskon J, Erjavec B, Dominko R, Jamnik J. The importance of interphase contacts in Li ion electrodes: The meaning of the high-frequency impedance Arc[J]. Electrochem. Solid-State Lett., 2008,11(10):A170-A174. doi: 10.1149/1.2964220

  • 加载中
    1. [1]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    6. [6]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    7. [7]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    10. [10]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    13. [13]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Wendi DouGuangying WanTiefeng LiuLin HanWu ZhangChuang SunRensheng SongJianhui ZhengYujing LiuXinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389

    16. [16]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    17. [17]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    18. [18]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    19. [19]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    20. [20]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

Metrics
  • PDF Downloads(59)
  • Abstract views(1542)
  • HTML views(506)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return