Citation: Chao FENG, Ling-Mei ZHANG, Yu-Meng YANG, Hong ZHAO. A cobalt co-crystal complex based on 5-(3-pyridyl)-1H-pyrazole-3-carboxylic acid: Synthesis, crystal structure and electrochemical property[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2377-2384. doi: 10.11862/CJIC.2023.207 shu

A cobalt co-crystal complex based on 5-(3-pyridyl)-1H-pyrazole-3-carboxylic acid: Synthesis, crystal structure and electrochemical property

Figures(9)

  • A new cobalt(Ⅱ)-based complex, namely {[Co(Hppc)2][Co2(4, 4′-bipy)(H2O)4](SO4)2•2H2O}n (1) where H2ppc=5-(3-pyridyl)-1H-pyrazole-3-carboxylic acid and 4, 4′-bipy=4, 4′-bipyridine, was synthesized by solvothermal method. The ligand H2ppc is constituted by a pyridine ring, pyrazole ring, and carboxyl group, which possesses rigidity and flexibility. Complex 1 was structurally determined by single-crystal X-ray diffraction and displays that the complex crystallizes in the C2/c pace group, monoclinic system. Complex 1 includes two crystallographic independent parts which are 2D layered [Co(Hppc)2] and 1D chain like [Co2(4, 4′-bipy)(H2O)4]2- forming a co-crystal structure with a {44•62}{4}2 topological network. Furthermore, complex 1 exhibits good electrochemiluminescence (ECL) performance and supercapacitive performance.
  • 加载中
    1. [1]

      Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou H C. Stable metal-organic frameworks: Design, synthesis, and applications[J]. Adv. Mater., 2018,301704303. doi: 10.1002/adma.201704303

    2. [2]

      Hezam A, Ünlü S, Elmalı F T. Metal complexes derived from tetradentate Schiff base ligands: Synthesis, spectroscopic analysis, thermogravimetric degradation and antimicrobial activities[J]. J. Mol. Struct., 2023,1293136156. doi: 10.1016/j.molstruc.2023.136156

    3. [3]

      Liu C S, Zhang H, Chen R, Shi X S, Bu X H, Yang M. Two new Co(Ⅱ) and Ni(Ⅱ) complexes with 3-(2-pyridyl)pyrazole-based ligand: Synthesis, crystal structures, and bioactivities[J]. Chem. Pharm. Bull., 2007,55:996-1001. doi: 10.1248/cpb.55.996

    4. [4]

      Qiao Y, Chen Y, Zhang S, Huang Q, Zhang Y, Li G. Six novel complexes based on 5-acetoxy-1-(6-chloro-pyridin-2-yl)-1H-pyrazole-3-carboxylic acid methyl ester derivatives: Syntheses, crystal structures, and anti-cancer activity[J]. Arab. J. Chem., 2021,14(7)103237. doi: 10.1016/j.arabjc.2021.103237

    5. [5]

      ZHANG Z Y, QIN L L, LIU Y, LI H, HU H Z, LIU Z Q. Synthesis, reversible phase transition and dielectric properties of molybdenum-based pyridines organic-inorganic hybrid crystalline materials[J]. Chinese J. Inorg. Chem., 2021,37(2):305-315.  

    6. [6]

      Yang G, Raptis R G, Šafár P. Cadmium(Ⅱ) complexes of 4-(4-pyridyl)pyrazole: A case of two conformational supramolecular isomers polythreaded in the same crystal and a rare example of 5-connected nov net[J]. Cryst. Growth Des., 2008,8:981-985. doi: 10.1021/cg700935x

    7. [7]

      Hawes C S, Kruger P E. Dimensionality variation in dinuclear Cu(Ⅱ) complexes of a heterotritopic pyrazolate ligand[J]. Crystals, 2014,4:32-41. doi: 10.3390/cryst4010032

    8. [8]

      Cheng J J, Wang S M, Shi Z, Sun H, Li B, Wang M, Li M, Li J, Liu Z. Five metal-organic frameworks based on 5-(pyridine-3-yl)pyrazole-3-carboxylic acid ligand: Syntheses, structures and properties[J]. Inorg. Chim. Acta, 2016,453:86-94. doi: 10.1016/j.ica.2016.08.001

    9. [9]

      Wen J C, Bao Y, Niu Q, Yang J, Fan Y, Li J, Jing Y, Zhao L, Liu D. Identification of N-(6-mercaptohexyl)-3-(4-pyridyl)-1H-pyrazole-5-carboxamide and its disulfide prodrug as potent histone deacetylase inhibitors with in vitro and in vivo anti-tumor efficacy[J]. Eur. J. Med. Chem., 2016,109:350-359. doi: 10.1016/j.ejmech.2016.01.013

    10. [10]

      Sheldrick G M. SHELXS-97, Program for crystal structure solution. University of Göttingen, Germany, 1997.

    11. [11]

      Sheldrick G M. SHELXL-2014/7: A program for structure refinement. University of Göttingen, Germany, 2014.

    12. [12]

      Chen Y T, Zhang S N, Wang Z F, Wei Q M, Zhang S H. Discovery of thirteen cobalt(Ⅱ) and copper(Ⅱ) salicylaldehyde Schiff base complexes that induce apoptosis and autophagy in human lung adenocarcinoma A549/DDP cells and that can overcome cisplatin resistance in vitro and in vivo[J]. Dalton Trans., 2022,51(10):4068-4078. doi: 10.1039/D1DT03749H

    13. [13]

      Li T T, Dang L L, Zhao C C, Lv Z Y, Yang X G, Zhao Y, Zhang S H. A self-sensitized Co(Ⅱ)-MOF for efficient visible-light-driven hydrogen evolution without additional cocatalysts[J]. J. Solid State Chem., 2021,3041226090.

    14. [14]

      Sakata M, Cooper M J. An analysis of the Rietveld refinement method[J]. J. Appl. Crystallogr., 1979,12(6):554-563. doi: 10.1107/S002188987901325X

    15. [15]

      Richter M M. Electrochemiluminescence (ECL)[J]. Chem. Rev., 2004,104(6):3003-3036. doi: 10.1021/cr020373d

    16. [16]

      Hu L Z, Xu G B. Applications and trends in electrochemiluminescence[J]. Chem. Soc. Rev., 2010,39(8):3275-3304. doi: 10.1039/b923679c

    17. [17]

      Pashaei B, Shahroosvand H, Moharramnezhad M, Kamyabi M A, Bakhshi H, Pilkington M, Nazeeruddin M K. Two in one: A dinuclear Ru(Ⅱ) complex for deep-red light-emitting electrochemical cells and as an electrochemiluminescence probe for organophosphorus pesticides[J]. Inorg. Chem., 2021,60(22):17040-17050. doi: 10.1021/acs.inorgchem.1c02154

    18. [18]

      Kerr E, Knezevic S, Francis P S, Hogan C F, Valenti G, Paolucci F, Kanoufi F, Sojic N. Electrochemiluminescence amplification in bead-based assays induced by a freely diffusing iridium(Ⅲ) complex[J]. ACS Sens., 2023,8(2):933-939. doi: 10.1021/acssensors.2c02697

    19. [19]

      Zhu L, Ye J, Yan M, Yu L, Peng Y, Huang J, Yang X. Sensitive and programmable "signal-off" electrochemiluminescence sensing platform based on cascade amplification and multiple quenching mechanisms[J]. Anal. Chem., 2021,93:2644-2651. doi: 10.1021/acs.analchem.0c04839

    20. [20]

      Wang Z, Sun J, Gong D, Mu J, Ji X, Bao Y. High sensitive electrochemical luminescence sensor for the determination of Cd2+ in spirulina[J]. Int. J. Electrochem. Sci., 2020,15:8710-8720. doi: 10.20964/2020.09.32

    21. [21]

      Feng C, Hua F Z, Guo J J, Lv C P, Zhao H. Structural elucidation and electrochemiluminescence on a 3D cadmium(Ⅱ) MOF with 5-c topology[J]. J. Inorg. Organomet. Polym., 2022,32(5):1891-1895. doi: 10.1007/s10904-022-02236-w

    22. [22]

      Chen Z H, Zhang S H, Zhang S M, Sun Q C, Xiao Y, Wang K. Cadmium-based coordination polymers from 1D to 3D: Synthesis, structures, and photoluminescent and electrochemiluminescent properties[J]. ChemPlusChem, 2019,84:190-202. doi: 10.1002/cplu.201800569

    23. [23]

      Zeng Y M, Zhang H Y, Zhang Y J, Ji F H, Liang J L, Zhang S H. Synthesis, crystal structures, fluorescence, electrochemiluminescent properties, and Hirshfeld surface analysis of four Cu/Mn Schiff‐base complexes[J]. Appl. Organomet. Chem., 2020,34(8)e5712. doi: 10.1002/aoc.5712

    24. [24]

      Xie W N, Hua F Z, Feng C, Jiang Y H, Zhao H. 1-Substituted--[1, 2, 3]-triazole-4-carboxylic acid ligand constructed Cu, Ni and Zn complexes: The role of crystal structure and electrochemiluminescence[J]. Inorg. Chem. Commun., 2020,119108124. doi: 10.1016/j.inoche.2020.108124

    25. [25]

      Hua F Z, Feng C, Xie W N, Luo Y N, Zhang L M, Zhao H. High efficiency electrochemiluminescence for copper(Ⅱ) and cadmium(Ⅱ) pyrazolate polymers[J]. J. Inorg. Organomet. Polym., 2021,31:3657-3664. doi: 10.1007/s10904-021-01983-6

    26. [26]

      Liu X X, Shi C D, Zhai C W, Cheng M L, Liu Q, Wang G X. Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material[J]. ACS Appl. Mater. Interfaces, 2016,8:4585-4591. doi: 10.1021/acsami.5b10781

    27. [27]

      Banerjee A, Chattopadhyay S. Synthesis and characterization of mixed valence cobalt(Ⅲ)/cobalt(Ⅱ) complexes with N, O-donor Schiff base ligands[J]. Polyhedron, 2019,159:1-11. doi: 10.1016/j.poly.2018.10.059

    28. [28]

      Lee D Y, Shinde D V, Kim E K, Lee W, Oh I W, Shrestha N K, Lee J K, Han S H. Supercapacitive property of metal-organic-frameworks with different pore dimensions and morphology[J]. Microporous Mesoporous Mat., 2013,171:53-57. doi: 10.1016/j.micromeso.2012.12.039

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    3. [3]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    4. [4]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    5. [5]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    6. [6]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    10. [10]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    11. [11]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    14. [14]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    15. [15]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    16. [16]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    17. [17]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    18. [18]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    19. [19]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    20. [20]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

Metrics
  • PDF Downloads(1)
  • Abstract views(281)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return