A cobalt co-crystal complex based on 5-(3-pyridyl)-1H-pyrazole-3-carboxylic acid: Synthesis, crystal structure and electrochemical property
- Corresponding author: Chao FENG, fchg042@163.com Hong ZHAO, zhaohong@seu.edu.cn
Citation: Chao FENG, Ling-Mei ZHANG, Yu-Meng YANG, Hong ZHAO. A cobalt co-crystal complex based on 5-(3-pyridyl)-1H-pyrazole-3-carboxylic acid: Synthesis, crystal structure and electrochemical property[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2377-2384. doi: 10.11862/CJIC.2023.207
Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou H C. Stable metal-organic frameworks: Design, synthesis, and applications[J]. Adv. Mater., 2018,301704303. doi: 10.1002/adma.201704303
Hezam A, Ünlü S, Elmalı F T. Metal complexes derived from tetradentate Schiff base ligands: Synthesis, spectroscopic analysis, thermogravimetric degradation and antimicrobial activities[J]. J. Mol. Struct., 2023,1293136156. doi: 10.1016/j.molstruc.2023.136156
Liu C S, Zhang H, Chen R, Shi X S, Bu X H, Yang M. Two new Co(Ⅱ) and Ni(Ⅱ) complexes with 3-(2-pyridyl)pyrazole-based ligand: Synthesis, crystal structures, and bioactivities[J]. Chem. Pharm. Bull., 2007,55:996-1001. doi: 10.1248/cpb.55.996
Qiao Y, Chen Y, Zhang S, Huang Q, Zhang Y, Li G. Six novel complexes based on 5-acetoxy-1-(6-chloro-pyridin-2-yl)-1H-pyrazole-3-carboxylic acid methyl ester derivatives: Syntheses, crystal structures, and anti-cancer activity[J]. Arab. J. Chem., 2021,14(7)103237. doi: 10.1016/j.arabjc.2021.103237
ZHANG Z Y, QIN L L, LIU Y, LI H, HU H Z, LIU Z Q. Synthesis, reversible phase transition and dielectric properties of molybdenum-based pyridines organic-inorganic hybrid crystalline materials[J]. Chinese J. Inorg. Chem., 2021,37(2):305-315.
Yang G, Raptis R G, Šafár P. Cadmium(Ⅱ) complexes of 4-(4-pyridyl)pyrazole: A case of two conformational supramolecular isomers polythreaded in the same crystal and a rare example of 5-connected nov net[J]. Cryst. Growth Des., 2008,8:981-985. doi: 10.1021/cg700935x
Hawes C S, Kruger P E. Dimensionality variation in dinuclear Cu(Ⅱ) complexes of a heterotritopic pyrazolate ligand[J]. Crystals, 2014,4:32-41. doi: 10.3390/cryst4010032
Cheng J J, Wang S M, Shi Z, Sun H, Li B, Wang M, Li M, Li J, Liu Z. Five metal-organic frameworks based on 5-(pyridine-3-yl)pyrazole-3-carboxylic acid ligand: Syntheses, structures and properties[J]. Inorg. Chim. Acta, 2016,453:86-94. doi: 10.1016/j.ica.2016.08.001
Wen J C, Bao Y, Niu Q, Yang J, Fan Y, Li J, Jing Y, Zhao L, Liu D. Identification of N-(6-mercaptohexyl)-3-(4-pyridyl)-1H-pyrazole-5-carboxamide and its disulfide prodrug as potent histone deacetylase inhibitors with in vitro and in vivo anti-tumor efficacy[J]. Eur. J. Med. Chem., 2016,109:350-359. doi: 10.1016/j.ejmech.2016.01.013
Sheldrick G M. SHELXS-97, Program for crystal structure solution. University of Göttingen, Germany, 1997.
Sheldrick G M. SHELXL-2014/7: A program for structure refinement. University of Göttingen, Germany, 2014.
Chen Y T, Zhang S N, Wang Z F, Wei Q M, Zhang S H. Discovery of thirteen cobalt(Ⅱ) and copper(Ⅱ) salicylaldehyde Schiff base complexes that induce apoptosis and autophagy in human lung adenocarcinoma A549/DDP cells and that can overcome cisplatin resistance in vitro and in vivo[J]. Dalton Trans., 2022,51(10):4068-4078. doi: 10.1039/D1DT03749H
Li T T, Dang L L, Zhao C C, Lv Z Y, Yang X G, Zhao Y, Zhang S H. A self-sensitized Co(Ⅱ)-MOF for efficient visible-light-driven hydrogen evolution without additional cocatalysts[J]. J. Solid State Chem., 2021,3041226090.
Sakata M, Cooper M J. An analysis of the Rietveld refinement method[J]. J. Appl. Crystallogr., 1979,12(6):554-563. doi: 10.1107/S002188987901325X
Richter M M. Electrochemiluminescence (ECL)[J]. Chem. Rev., 2004,104(6):3003-3036. doi: 10.1021/cr020373d
Hu L Z, Xu G B. Applications and trends in electrochemiluminescence[J]. Chem. Soc. Rev., 2010,39(8):3275-3304. doi: 10.1039/b923679c
Pashaei B, Shahroosvand H, Moharramnezhad M, Kamyabi M A, Bakhshi H, Pilkington M, Nazeeruddin M K. Two in one: A dinuclear Ru(Ⅱ) complex for deep-red light-emitting electrochemical cells and as an electrochemiluminescence probe for organophosphorus pesticides[J]. Inorg. Chem., 2021,60(22):17040-17050. doi: 10.1021/acs.inorgchem.1c02154
Kerr E, Knezevic S, Francis P S, Hogan C F, Valenti G, Paolucci F, Kanoufi F, Sojic N. Electrochemiluminescence amplification in bead-based assays induced by a freely diffusing iridium(Ⅲ) complex[J]. ACS Sens., 2023,8(2):933-939. doi: 10.1021/acssensors.2c02697
Zhu L, Ye J, Yan M, Yu L, Peng Y, Huang J, Yang X. Sensitive and programmable "signal-off" electrochemiluminescence sensing platform based on cascade amplification and multiple quenching mechanisms[J]. Anal. Chem., 2021,93:2644-2651. doi: 10.1021/acs.analchem.0c04839
Wang Z, Sun J, Gong D, Mu J, Ji X, Bao Y. High sensitive electrochemical luminescence sensor for the determination of Cd2+ in spirulina[J]. Int. J. Electrochem. Sci., 2020,15:8710-8720. doi: 10.20964/2020.09.32
Feng C, Hua F Z, Guo J J, Lv C P, Zhao H. Structural elucidation and electrochemiluminescence on a 3D cadmium(Ⅱ) MOF with 5-c topology[J]. J. Inorg. Organomet. Polym., 2022,32(5):1891-1895. doi: 10.1007/s10904-022-02236-w
Chen Z H, Zhang S H, Zhang S M, Sun Q C, Xiao Y, Wang K. Cadmium-based coordination polymers from 1D to 3D: Synthesis, structures, and photoluminescent and electrochemiluminescent properties[J]. ChemPlusChem, 2019,84:190-202. doi: 10.1002/cplu.201800569
Zeng Y M, Zhang H Y, Zhang Y J, Ji F H, Liang J L, Zhang S H. Synthesis, crystal structures, fluorescence, electrochemiluminescent properties, and Hirshfeld surface analysis of four Cu/Mn Schiff‐base complexes[J]. Appl. Organomet. Chem., 2020,34(8)e5712. doi: 10.1002/aoc.5712
Xie W N, Hua F Z, Feng C, Jiang Y H, Zhao H. 1-Substituted--[1, 2, 3]-triazole-4-carboxylic acid ligand constructed CuⅡ, NiⅡ and ZnⅡ complexes: The role of crystal structure and electrochemiluminescence[J]. Inorg. Chem. Commun., 2020,119108124. doi: 10.1016/j.inoche.2020.108124
Hua F Z, Feng C, Xie W N, Luo Y N, Zhang L M, Zhao H. High efficiency electrochemiluminescence for copper(Ⅱ) and cadmium(Ⅱ) pyrazolate polymers[J]. J. Inorg. Organomet. Polym., 2021,31:3657-3664. doi: 10.1007/s10904-021-01983-6
Liu X X, Shi C D, Zhai C W, Cheng M L, Liu Q, Wang G X. Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material[J]. ACS Appl. Mater. Interfaces, 2016,8:4585-4591. doi: 10.1021/acsami.5b10781
Banerjee A, Chattopadhyay S. Synthesis and characterization of mixed valence cobalt(Ⅲ)/cobalt(Ⅱ) complexes with N, O-donor Schiff base ligands[J]. Polyhedron, 2019,159:1-11. doi: 10.1016/j.poly.2018.10.059
Lee D Y, Shinde D V, Kim E K, Lee W, Oh I W, Shrestha N K, Lee J K, Han S H. Supercapacitive property of metal-organic-frameworks with different pore dimensions and morphology[J]. Microporous Mesoporous Mat., 2013,171:53-57. doi: 10.1016/j.micromeso.2012.12.039
Shuwen SUN , Gaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368
Wen LUO , Lin JIN , Palanisamy Kannan , Jinle HOU , Peng HUO , Jinzhong YAO , Peng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Gaofeng WANG , Shuwen SUN , Yanfei ZHAO , Lixin MENG , Bohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
Peng Meng , Qian-Cheng Luo , Aidan Brock , Xiaodong Wang , Mahboobeh Shahbazi , Aaron Micallef , John McMurtrie , Dongchen Qi , Yan-Zhen Zheng , Jingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Xinyu Huai , Jingxuan Liu , Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Mengjuan Sun , Muye Zhou , Yifang Xiao , Hailei Tang , Jinhua Chen , Ruitao Zhang , Chunjiayu Li , Qi Ya , Qian Chen , Jiasheng Tu , Qiyue Wang , Chunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
Yingying Yan , Wanhe Jia , Rui Cai , Chun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819
All hydrogen atoms are omitted for clarity; Symmetry code: A: x, 2-y, -1/2+z; B: 1/2-x, 1/2+y, 1/2-z; C: 1/2-x, 5/2-y, -z.
Symmetry codes: B: 1/2-x, 1/2+y, 1/2-z; C: 1/2-x, 5/2-y, -z.