Citation: Yan-Fen FANG, Yu-Ting HE, Li ZHAO, Hui-Bin NIU, Chun-Cheng CHEN, Yue LI, Ying-Ping HUANG. A Zn(Ⅱ) metal-organic framework as a matrix metalloproteinase mimic to catalyze the hydrolysis of microcystin-LR[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2265-2278. doi: 10.11862/CJIC.2023.205 shu

A Zn(Ⅱ) metal-organic framework as a matrix metalloproteinase mimic to catalyze the hydrolysis of microcystin-LR

Figures(7)

  • Constructed by the ligands of 3-amino-1,2,4-triazole-5-carboxylic acid (Hatz) and 1,3,5-benzenetricarboxylic acid (H3btc), a Zn(Ⅱ) metal-organic framework with nanosheet morphology (Zn-MOF-1-NS) was prepared to mimic the structures of matrix metalloproteinases (MMPs). Zn-MOF-1-NS was highly effective in catalyzing the hydrolysis of the peptide bonds of microcystin (MC-LR). Within just 7.5 h, 82.6% of MC-LR was hydrolyzed (k=0.23 h-1), which was much higher than the reported best hydrolysis efficiency of siderite (k=0.04 h-1). This research has found that even when the amount of humic acid was increased tenfold, it did not significantly impede MC-LR decomposition. This demonstrates the impressive ability of the catalyst to resist interference from natural organic matter (NOM). Through in-situ attenuated total reflectance Fourier transform infrared spectroscopy (in-situ ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) analyses, theoretical calculations, and comparison with a non-carboxyl counterpart, it was discovered that the surficial Zn(Ⅱ) site and the carboxyl group of Zn-MOF-1-NS participate in the cleavage of the peptide bond.
  • 加载中
    1. [1]

      Pan C, Qin H X, Yan M H, Qiu X F, Gong W Y, Luo W X, Guo H Q, Han X D. Environmental microcystin exposure triggers the poor prognosis of prostate cancer: Evidence from case-control, animal, and in vitro studies[J]. J. Environ. Sci., 2023,127:69-81. doi: 10.1016/j.jes.2022.05.051

    2. [2]

      Li Y W, Zhan X J, Xiang L, Deng Z S, Huang B H, Wen H F, Sun T F, Cai Q Y, Li H, Mo C H. Analysis of trace microcystins in vegetables using solid-phase extraction followed by high performance liquid chromatography triple-quadrupole mass spectrometry[J]. J. Agric. Food Chem., 2014,62:11831-11839. doi: 10.1021/jf5033075

    3. [3]

      Zhai P, Liu C, Feng G, Cao Y H, Xiang L, Zhou K, Guo P, Li J Q, Jiang W X. Aggregation-induced emission luminogens-encoded microspheres preparation and flow-through immunoaffinity chromatographic assay development for microcystin-LR analysis[J]. Food Chem., 2023,402134398. doi: 10.1016/j.foodchem.2022.134398

    4. [4]

      Cianci-Gaskill J A, Knott K K, O'Hearn R, Argerich A, Niswonger D, Wenzel J, Whittier J B, North R L. Microcystin accumulation in sportfish from an agricultural reservoir differs among feeding guild, tissue type, and time of sampling[J]. Aquat. Toxicol., 2022,250106242. doi: 10.1016/j.aquatox.2022.106242

    5. [5]

      Liu X W, Chen Z L, Zhou N, Shen J M, Ye M M. Degradation and detoxification of microcystin-LR in drinking water by sequential use of UV and ozone[J]. J. Environ. Sci., 2010,22(12):1897-1902. doi: 10.1016/S1001-0742(09)60336-3

    6. [6]

      Ebrahimi A, Jafari N, Ebrahimpour K, Karimi M, Rostamnia S, Behnami A, Ghanbari R, Mohammadi A, Rahimi B, Abdolahnejad A. A novel ternary heterogeneous TiO2/BiVO4/NaY-zeolite nanocomposite for photocatalytic degradation of microcystin-leucine arginine (MC-LR) under visible light[J]. Ecotox. Environ. Safe., 2021,210111862. doi: 10.1016/j.ecoenv.2020.111862

    7. [7]

      Almuhtaram H, Hofmann R. Evaluation of ultraviolet/peracetic acid to degrade M. aeruginosa and microcystins-LR and -RR[J]. J. Hazard. Mater., 2022,424127357. doi: 10.1016/j.jhazmat.2021.127357

    8. [8]

      ZHANG Y, XIONG Q M, ZHANG N H, CHEN S M, ZHANG R X, MA Z G, CHEN X M. Crystal structure of zinc(Ⅱ) complex containing pyridine and its catalytic activity of hydrolysis of p-nitrophenyl phosphate[J]. Chinese J. Inorg. Chem., 2013,29(12):2555-2560.  

    9. [9]

      LI J, XU Y, XU X, XU Z G, LIU H Y. Mechanism of catalytic hydrolysis cleavage of RNA phosphodiester analogue HpPNP by corrolemanganese(Ⅲ) complex[J]. Chinese J. Inorg. Chem., 2020,36(3):435-442.  

    10. [10]

      Mian M R, Chen H Y, Cao R, Kirlikovali K O, Snurr R Q, Islamoglu T, Farha O K. Insights into catalytic hydrolysis of organophosphonates at M—OH sites of azolate-based metal organic frameworks[J]. J. Am. Chem. Soc., 2021,143:9893-9900. doi: 10.1021/jacs.1c03901

    11. [11]

      Kirlikovali K O, Chen Z J, Islamoglu T, Hupp J T, Farha O K. Zirconium-based metal-organic frameworks for the catalytic hydrolysis of organophosphorus nerve agents[J]. ACS Appl. Mater. Interfaces, 2020,12:14702-1472. doi: 10.1021/acsami.9b20154

    12. [12]

      Fang Y F, Zhou W, Tang C C, Huang Y P, Johnson D M, Ren Z J, Ma W H. Brönsted catalyzed hydrolysis of microcystin-LR by siderite[J]. Environ. Sci. Technol., 2018,52:6426-6437. doi: 10.1021/acs.est.7b06096

    13. [13]

      Jacobsen F E, Lewis J A, Cohen S M. A new role for old ligands: Discerning chelators for zinc metalloproteinases[J]. J. Am. Chem. Soc., 2006,128(10):3156-3157. doi: 10.1021/ja057957s

    14. [14]

      Díaz N, Suárez D, Sordo T L. Quantum chemical study on the coordination environment of the catalytic zinc ion in matrix metalloproteinases[J]. J. Phys. Chem. B, 2006,110(47):24222-24230. doi: 10.1021/jp0656882

    15. [15]

      Wang Q Y, Sun Z B, Zhang M, Zhao S N, Luo P, Gong C H, Liu W X, Zang S Q. Cooperative catalysis between dual copper centers in a metal-organic framework for efficient detoxification of chemical warfare agent simulants[J]. J. Am. Chem. Soc., 2022,144:21046-21055. doi: 10.1021/jacs.2c05176

    16. [16]

      Jiao L, Zhu J T, Zhang Y, Yang W J, Zhou S Y, Li A W, Xie C F, Zheng X S, Zhou W, Yu S H, Jiang H L. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction[J]. J. Am. Chem. Soc., 2021,143:19417-19424. doi: 10.1021/jacs.1c08050

    17. [17]

      Mondloch J E, Katz M J, Isley W C, Ghosh P, Liao P, Bury W, Wagner G W, Hall M G, De Coste J B, Peterson G W, Snurr R Q, Cramer C J, Hupp J T, Farha O K. Destruction of chemical warfare agents using metal-organic frameworks[J]. Nat. Mater., 2015,14:512-516. doi: 10.1038/nmat4238

    18. [18]

      Gao J Y, Wang N, Xiong X H, Chen C J, Xie W P, Ran X R, Long Y, Yue S T, Liu Y L. Syntheses, structures, and photoluminescent properties of a series of zinc(Ⅱ)-3-amino-1,2,4-triazolate coordination polymers constructed by varying carboxylate anions[J]. CrystEngComm, 2013,15:3261-3270. doi: 10.1039/c3ce00049d

    19. [19]

      Jonckheere D, Steele J A, Claes B, Bueken B, Claes L, Lagrain B, Roeffaers M B J, De Vos D E. Adsorption and separation of aromatic amino acids from aqueous solutions using metal-organic frameworks[J]. ACS Appl. Mater. Interfaces, 2017,9:30064-30073. doi: 10.1021/acsami.7b09175

    20. [20]

      Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor. Chem. Acc., 2008,120:215-241. doi: 10.1007/s00214-007-0310-x

    21. [21]

      Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy[J]. Phys. Chem. Chem. Phys., 2005,7:3297-3305. doi: 10.1039/b508541a

    22. [22]

      Dai S, Simms C, Dovgaliuk I, Patriarche G, Tissot A, Parac-Vogt T N, Serre C. Monodispersed MOF-808 nanocrystals synthesized via a scalable room-temperature approach for efficient heterogeneous peptide bond hydrolysis[J]. Chem. Mater., 2021,33:7057-7066. doi: 10.1021/acs.chemmater.1c02174

    23. [23]

      Tian H L, Araya T, Li R P, Fang Y F, Huang Y P. Removal of MC-LR using the stable and efficient MIL-100/MIL-53(Fe) photocatalyst: The effect of coordinate immobilized layers[J]. Appl. Catal. B-Environ., 2019,254:371-379. doi: 10.1016/j.apcatb.2019.04.086

    24. [24]

      Wang J H, Fan Y D, Lee H W, Yi C Q, Cheng C M, Zhao X, Yang M. Ultrasmall metal-organic framework Zn-MOF-74 nanodots: Size-controlled synthesis and application for highly selective colorimetric sensing of iron(Ⅲ) in aqueous solution[J]. ACS Appl. Nano Mater., 2018,1:3747-3753. doi: 10.1021/acsanm.8b01083

    25. [25]

      Jiang T, Zhang X M. Temperature tuned synthesis of zinc N,N-bis-(1 (2)H-tetrazol-5-yl)-amine complexes: From Zn3O cluster-based 3-connected 63-hcb and (3, 6)-connected (43)2(46)-kgd layers to Zn5(OH)4 chain-based 3D open framework[J]. Cryst. Growth Des., 2008,8:3077-3083. doi: 10.1021/cg800248b

    26. [26]

      ZHANG J, YANG Y, WEI Z, JING X, DUAN C Y. Ferrocene-functionalized metal-organic macrocycles mimicking hydrogenase for photocatalytic nitro reduction[J]. Chinese J. Inorg. Chem., 2022,38(12):2469-2478. doi: 10.11862/CJIC.2022.237

    27. [27]

      Yue Y, Yu H H, Li R F, Xing R G, Liu S, Li K C, Wang X Q, Chen X L, Li P C. Biochemical and kinetic evaluation of the enzymatic toxins from two stinging scyphozoans Nemopilema nomurai and Cyanea nozakii[J]. Toxicon, 2017,125:1-12. doi: 10.1016/j.toxicon.2016.11.005

    28. [28]

      YANG J H, MENG X Y, TANG M Y, ZHOU J, SUN Y M, DAI Y Q. Controllable preparation of high concentration nitrogen-doped porous graphene toward enzyme-like catalytic properties[J]. Chinese J. Inorg. Chem., 2020,36(12):2315-2324. doi: 10.11862/CJIC.2020.259

    29. [29]

      Sarker H, Hardy E, Haimour A, Maksymowych W P, Botto L D, Fernandez-Patron C. Identification of fibrinogen as a natural inhibitor of MMP-2[J]. Sci. Rep., 2019,94340. doi: 10.1038/s41598-019-40983-y

    30. [30]

      Biswal H S, Gloaguen E, Loquais Y, Tardivel B, Mons M. Strength of NH⋯S hydrogen bonds in methionine residues revealed by gas-phase IR/UV spectroscopy[J]. J. Phys. Chem. Lett., 2012,3:755-759. doi: 10.1021/jz300207k

    31. [31]

      Sanaei Z, Shamsipur A, Ramezanzadeh B. Manipulating a smart multi-functional nano-carrier based on L-cysteine-GO-ZIF67@ZIF8 core@shell MOFs-LDH for designing an excellent self-healing coating[J]. Appl. Mater. Today, 2023,30101718. doi: 10.1016/j.apmt.2022.101718

    32. [32]

      Romero-Muñiz C, Gavira-Vallejo J M, Merkling P J, Calero S. Impact of small adsorbates in the vibrational spectra of Mg- and Zn-MOF-74 revealed by first-principles calculations[J]. ACS Appl. Mater. Interfaces, 2020,12:54980-54990. doi: 10.1021/acsami.0c16629

    33. [33]

      Zhu Y, Wang K, Lu J H, Pan Z Y, Rong J, Zhang T, Yang D Y, Pan J M, Qiu F X. Teamed boronate affinity-functionalized Zn-MOF/PAN-derived molecularly imprinted hollow carbon electrospinning nanofibers for selective adsorption of shikimic acid[J]. ACS Appl. Mater. Interfaces, 2022,14:27294-27308. doi: 10.1021/acsami.2c06664

    34. [34]

      Socrates G. Infrared and Raman characteristic group frequencies: Tables and charts. 3rd ed. New York: John Wiley & Sons, Ltd., 2004: 235-235

    35. [35]

      Wang F F, Wu Y, Gao Y, Li H, Chen Z L. Effect of humic acid, oxalate and phosphate on Fenton-like oxidation of microcystin-LR by nanoscale zero-valent iron[J]. Sep. Purif. Technol., 2016,170:337-343. doi: 10.1016/j.seppur.2016.06.046

    36. [36]

      Sheng F, Ling J Y, Wang C, Jin X, Gu X Y, Li H, Zhao J T, Wang Y J, Gu C. Rapid hydrolysis of penicillin antibiotics mediated by adsorbed zinc on goethite surfaces[J]. Environ. Sci. Technol., 2019,53:10705-10713. doi: 10.1021/acs.est.9b02666

    37. [37]

      Cheng R, Hou S N, Wang J F, Zhu H, Shutes B, Yan B X. Biochar-amended constructed wetlands for eutrophication control and microcystin (MC-LR) removal[J]. Chemosphere, 2022,295133830. doi: 10.1016/j.chemosphere.2022.133830

    38. [38]

      Wu D D, Huang S H, Zhang X X, Ren H Q, Jin X, Gu C. Iron minerals mediated interfacial hydrolysis of chloramphenicol antibiotic under limited moisture conditions[J]. Environ. Sci. Technol., 2021,55:9569-9578. doi: 10.1021/acs.est.1c01016

    39. [39]

      Oram B K, Monu , Bandyopadhyay B. Impact of donor acidity and acceptor anharmonicity on νC=O spectral shifts in O—H⋯O=C H-bonded ketone-alcohol complexes: An IR spectroscopic investigation[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2020,230118070. doi: 10.1016/j.saa.2020.118070

    40. [40]

      Fernández-Andrade K J, Fernández-Andrade A A, Zambrano-Intriago L Á, Arteaga-Perez L E, Alejandro-Martin S, Baquerizo-Crespo R J, Luque R, Rodríguez-Díaz J M. Microwave-assisted MOF@biomass layered nanomaterials: Characterization and applications in wastewater treatment[J]. Chemosphere, 2023,314137664. doi: 10.1016/j.chemosphere.2022.137664

    41. [41]

      Kang S H, Xing B S. Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT[J]. Langmuir, 2007,23:7024-7031. doi: 10.1021/la700543f

    42. [42]

      Beaula T J, Muthuraja P, Dhandapani M, Joe I H, Rastogi V K, Jothy V B. Biological applications and spectroscopic investigations of 4-nitrophenol-urea dimer: A DFT approach[J]. Chem. Phys. Lett., 2016,645:59-70. doi: 10.1016/j.cplett.2015.12.029

    43. [43]

      Stefan I C, Mandler D, Scherson D A. In situ FTIR-ATR studies of functionalized self-assembled bilayer interactions with metal ions in aqueous solutions[J]. Langmuir, 2002,18:6976-6980. doi: 10.1021/la025722d

    44. [44]

      Gershevitz O, Sukenik C N. In situ FTIR-ATR analysis and titration of carboxylic acid-terminated SAMs[J]. J. Am. Chem. Soc., 2004,126:482-483. doi: 10.1021/ja037610u

    45. [45]

      Cao E S, Guo Z Q, Song G Q, Zhang Y J, Hao W T, Sun L, Nie Z Q. MOF-derived ZnFe2O4/(Fe-ZnO) nanocomposites with enhanced acetone sensing performance[J]. Sens. Actuator B-Chem., 2020,325128783. doi: 10.1016/j.snb.2020.128783

    46. [46]

      Qin M H, Shi Y M, Lu D K, Deng J J, Shi G Y, Zhou T S. High-performance Hf/Ti-doped defective Zr-MOFs for cefoperazone adsorption: Behavior and mechanisms[J]. Appl. Surf. Sci., 2022,595153494. doi: 10.1016/j.apsusc.2022.153494

    47. [47]

      May M M, Supplie O, Hohn C, Krol R V D, Lewerenz H J, Hannappel T. The interface of GaP(100) and H2O studied by photoemission and reflection anisotropy spectroscopy[J]. New J. Phys., 2013,15103003. doi: 10.1088/1367-2630/15/10/103003

    48. [48]

      Asadi M, Babamiri B, Hallaj R, Salimi A. Unusual synthesis of nanostructured Zn-MOF by bipolar electrochemistry in ionic liquid-based electrolyte: Intrinsic alkaline phosphatase-like activity[J]. J. Electroanal. Chem., 2022,914116306. doi: 10.1016/j.jelechem.2022.116306

    49. [49]

      Zhang Y, Wang J P, Zhao S, Serdechnova M, Blawert C, Wang H, Zheludkevich M L, Chen F. Double-ligand strategy to construct an inhibitor-loaded Zn-MOF and its corrosion protection ability for aluminum alloy 2A12[J]. ACS Appl. Mater. Interfaces, 2021,13:51685-51694. doi: 10.1021/acsami.1c13738

    50. [50]

      Bendikov M, Quadt S R, Rabin O, Apeloig Y. Addition of nucleophiles to silenes. A theoretical study of the effect of substituents on their kinetic stability[J]. Organometallics, 2002,21:3930-3939. doi: 10.1021/om0202571

    51. [51]

      Ly H G T, Fu G X, Kondinski A, Bueken B, De Vos D, Parac-Vogt T N. Superactivity of MOF-808 toward peptide bond hydrolysis[J]. J. Am. Chem. Soc., 2018,140:6325-6335. doi: 10.1021/jacs.8b01902

  • 加载中
    1. [1]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    2. [2]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    3. [3]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    4. [4]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    5. [5]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

    6. [6]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    7. [7]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    10. [10]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    18. [18]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    19. [19]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    20. [20]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

Metrics
  • PDF Downloads(3)
  • Abstract views(349)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return