Citation: Cong-Yu ZUO, Qin-Qin LI, Ming-Zhu DAI, Chen-Yang FAN, Ye XU, Guang-Ze LIU, Si-Yu WANG. A Cadmium-based metal-organic framework for fluorescence detection of acetone and Fe3+[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2301-2310. doi: 10.11862/CJIC.2023.203 shu

A Cadmium-based metal-organic framework for fluorescence detection of acetone and Fe3+

  • Corresponding author: Cong-Yu ZUO, cyzuo@aust.edu.cn
  • Received Date: 5 July 2023
    Revised Date: 2 November 2023

Figures(9)

  • A Cd-based metal-organic framework with the formula (Me2NH2)[Cd(BTB)(DMF)]·DMF·H2O (Cd-MOF) has been synthesized via the solvothermal method using 1, 3, 5-tris(4-carboxyphenyl)benzene (H3BTB) as a ligand, and its structure was characterized by single crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, and thermogravimetric analysis. It could selectively detect acetone and Fe3+ ions by fluorescence quenching with the detection limits (volume fraction and concentration) of 0.6% and 0.89 μmol·L-1, respectively. The linear detection ranges of 2.0%-2.5% for acetone and 0-0.05 mmol·L-1 for Fe3+ ions were observed. Time response and recyclability experiments confirmed that Cd-MOF is a reliable and efficient fluorescence sensor for the long-term detection of acetone molecules and Fe3+ ions.
  • 加载中
    1. [1]

      Han Y H, Ye Y X, Tian C B, Zhang Z J, Du S W, Xiang S C. High proton conductivity in an unprecedented anionic metalling organic framework (MROF) containing novel metalworking clusters with the largest diameter[J]. J. Mater. Chem. A, 2016,4(48):18742-18746. doi: 10.1039/C6TA07939C

    2. [2]

      Shen Y W, Tissot A, Serre C. Recent progress on MOF-based optical sensors for VOC sensing[J]. Chem. Sci., 2022,13(47):13978-4007. doi: 10.1039/D2SC04314A

    3. [3]

      CUI Y J, QIAN G D. Research progress of photonic metal-organic framework materials[J]. Journal of the Chinese Ceramic Society, 2021,49(2):285-295.  

    4. [4]

      Liu Z Q, Zhao Y, Deng Y, Zhang X D, Kang Y S, Lu Q Y, Sun W Y. Selectively sensing and adsorption properties of nickel(Ⅱ) and cadmium(Ⅱ) architectures with rigid 1H-imidazol-4-yl containing ligands and 1, 3, 5-tri(4-carboxyphenyl)benzene[J]. Sens. Actuator B-Chem., 2017,250:179-188. doi: 10.1016/j.snb.2017.04.151

    5. [5]

      Jin W H, Wang Q, Chen M, Zhang Q, Qu D H. Color-tunable luminescent materials via a CB[8]-based supramolecular assembly strategy[J]. Mat. Chem. Front., 2021,55:2347-2352.

    6. [6]

      Liu C F, Yuan C M, Shi G J, Jia K, Liu J, Wang K P, Chen S J, Hu Z Q. Chiral biol-[4]helicene hybrids: Strong solid-state organic emitters with aggregation-enhanced emission and chiroptical properties[J]. Dyes Pigment., 2023,210110992. doi: 10.1016/j.dyepig.2022.110992

    7. [7]

      Lustig W P, Mukherjee S, Rudd N D, Desai A V, Li J, Ghosh S K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications[J]. Chem. Soc. Rev., 2017,46(11):3242-3285. doi: 10.1039/C6CS00930A

    8. [8]

      Gutierrez M, Zhang Y, Tan J C. Confinement of luminescent guests in metal-organic frameworks: Understanding pathways from synthesis and multimodal characterization to potential applications of LG@MOF systems[J]. Chem. Rev., 2022,122(11):10438-10483. doi: 10.1021/acs.chemrev.1c00980

    9. [9]

      Chang K W, Men X J, Chen H B, Liu Z H, Yin S Y, Qin W P, Yuan Z, Wu C F. Silica-encapsulated semiconductor polymer dots as stable phosphors for white light-emitting diodes[J]. J. Mater. Chem. C, 2015,3(28):7281-7285. doi: 10.1039/C5TC00978B

    10. [10]

      Yu L P, Zhang X, Wei D X, Wu Q, Jiang X R, Chen G Q. Highly efficient fluorescent material based on rare-earth-modified polyhydroxyalkanoates[J]. Biomacromolecules, 2019,20(9):3233-3241. doi: 10.1021/acs.biomac.8b01722

    11. [11]

      Zhao M, Xi P, Gu X H, Li Z R, Gao M M, Cheng B W. Synthesis, characterization and fluorescence properties of a novel rare earth complex for anti-counterfeiting material[J]. J. Rare Earth, 2010,28:75-78. doi: 10.1016/S1002-0721(10)60359-6

    12. [12]

      ZHAO Y W, LI X, ZHANG F Q, ZHANG X. Precise control of the dimension of homochiral metal-organic frameworks (MOFs) and their luminescence properties[J]. Acta Chim. Sinica, 2021,79(11)1409.  

    13. [13]

      PANG C M, LUO S H, HAO Z F, GAO J, HUANG Z H, YU J H, YU S M, WANG Z Y. Synthesis and fluorescent sensing application of porous organic polymer materials[J]. Chin. J. Org. Chem., 2018,38(10):2606-2624.  

    14. [14]

      Zuo C Y, Lu Z Y, Zhang M X. Solvent-induced generation of two magnesium-based metal-organic frameworks with doubly inter-penetrated ReO3 nets constructed from the same linkers but distinct inorganic nodes[J]. Inorg. Chem. Commun., 2015,52:41-45. doi: 10.1016/j.inoche.2014.12.012

    15. [15]

      Liang J L, Chen Q N, Zhang J X, Lian W Q, Qiu Y X, Xie H Y, Liu W T, Xie W T, Xu W Q. A novel triazene-based cadmium metal-organic framework as a selective fluorescent sensor for Hg2+[J]. Polyhedron, 2022,224116014. doi: 10.1016/j.poly.2022.116014

    16. [16]

      Zhao C J, Zhao L, Liu X, Meng L S. Synthesis and characterization of two Cd(Ⅱ) complexes constructed with tricarboxylic acids and as a fluorescent probe of iron ions[J]. Inorg. Chim. Acta, 2019,486:48-54. doi: 10.1016/j.ica.2018.10.029

    17. [17]

      Shu T, Wang N, Li Y, Fu D H, Fan H H, Luo M J, Yue S T. A New Three-dimensional Cd(Ⅱ) metal-organic framework for highly selective sensing of Fe3+ as well as nitroaromatic compounds[J]. ChemistrySelect, 2017,2(36):12046-12050. doi: 10.1002/slct.201702246

    18. [18]

      Dong J, Zhang K, Li X, Qian Y, Zhu H, Yuan D, Xu Q H, Jiang J, Zhao D. Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing[J]. Nat. Commun., 2017,8(1)1142. doi: 10.1038/s41467-017-01293-x

    19. [19]

      Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987,51(12):913-915. doi: 10.1063/1.98799

    20. [20]

      LI Z H, LUO L L, WAN C Q, HU Y Q, ZHOU R H, LI X. Synthesis, crystal structure and fluorescence sensing properties of Cu(Ⅱ)/Zn(Ⅱ) coordination polymers constructed from 3-(4'-carboxyphenoxyl)benzoic acid towards acetone and Tb3+ ion[J]. Chinese J. Inorg. Chem., 2021,37(8):1381-1389. doi: 10.11862/CJIC.2021.177

    21. [21]

      Zuo C Y, Li Z P, Bai N, Xie F, Liu Y, Zheng L Y, Zhang M X. Two novel magnesium-based metal-organic frameworks: Structure tuning from 2D to 3D by introducing the auxiliary ligand of acetate[J]. Inorg. Chim. Acta, 2018,477:59-65. doi: 10.1016/j.ica.2018.02.002

    22. [22]

      Zhang Y, Yuan S, Day G, Wang X, Yang X, Zhou H C. Luminescent sensors based on metal-organic frameworks[J]. Coord. Chem. Rev., 2018,354:28-45. doi: 10.1016/j.ccr.2017.06.007

    23. [23]

      Wang T, Liu Q H, Gao Y, Yang X Y, Yang W T, Dang S, Sun Z M. A multi-responsive luminescent sensor towards Fe3+ and acetone based on a Cd-containing metal-organic framework[J]. Chin. Chem. Lett., 2016,27:497-501. doi: 10.1016/j.cclet.2016.01.011

    24. [24]

      Hao Z M, Song X Z, Zhu M, Meng X, Zhao S N, Su S Q, Yang W T, Zhang H J. One-dimensional channel-structured Eu-MOF for sensing small organic molecules and Cu2+ ion[J]. J. Mater. Chem., 2013,1:11043-11050. doi: 10.1039/c3ta12270k

    25. [25]

      Guo Z Y, Xu H, Su S Q, Cai J F, Dang S, Xiang S C, Qian G D, Chen B L. A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules[J]. Inorg. Chem., 2011,47:5551-5553.

    26. [26]

      Zhou, Shi, Li, Cheng. Experimental studies and mechanism analysis of high-sensitivity luminescent sensing of pollutional small molecules and ions in Ln4O4 cluster based microporous metal-organic frameworks[J]. J. Phys. Chem. C, 2014,118(1):416-426. doi: 10.1021/jp4097502

    27. [27]

      Ma D Y, Wang W X, Li J, Daiguebonne C, Calvez G, Guillou O. In situ 2, 5-pyrazinedicarboxylate and oxalate ligands synthesis leading to a microporous europium-organic framework capable of selective sensing of small molecules[J]. CrystEngComm, 2010(12):4372-4377.

    28. [28]

      ZHU B L, HE P Z, WANG Q H, CUI S X. A fluorescent three-dimensional Zn(Ⅱ) metal-organic framework (MOF) incorporating two aromatic ligands[J]. J. Synth. Cryst., 2021,50(8):1471-1477.  

    29. [29]

      Liu L L, Yu Y Z, Zhao X J, Wang Y R, Cheng F Y, Zhang M K, Shu J J, Liu L. A robust Zn(Ⅱ)/Na(Ⅰ)-MOF decorated with[(OAc)2(H2O)2]n2n- anions for the luminescence sensing of copper ions based on the inner filter effect[J]. Dalton Trans., 2018,47(23):7787-7794. doi: 10.1039/C8DT00908B

    30. [30]

      Yazhini C, Rafi J, Chakraborty P, Kapse S, Thapa R, Neppolian B. Inner filter effect on the amino-functionalized metal-organic framework for the selective detection of tetracycline[J]. J. Clean Prod., 2022,373133929. doi: 10.1016/j.jclepro.2022.133929

    31. [31]

      Xu H, Hu H C, Cao C S, Zhao B. Lanthanide organic framework as a regenerable luminescent probe for Fe3+[J]. Inorg. Chem., 2015,54(10):4585-4587. doi: 10.1021/acs.inorgchem.5b00113

    32. [32]

      Guo L, Liu Y, Kong R M, Chen G, Liu Z, Qu F L, Xia L, Tan W H. A metal-organic framework as selectivity regulator for Fe3+ and ascorbic acid detection[J]. Anal. Chem., 2019,91(19):12453-12460. doi: 10.1021/acs.analchem.9b03143

    33. [33]

      Zhuang X R, Zhang X, Zhang N X, Wang Y, Zhao L Y, Yang Q F. Novel multifunctional Zn metal-organic framework fluorescent probe demonstrating unique sensitivity and selectivity for detection of PA and Fe3+ ions in water solution[J]. Cryst. Growth Des., 2019,19(10):5729-5736. doi: 10.1021/acs.cgd.9b00704

    34. [34]

      Wang J H, Fan Y D, Lee H W, Yi C, Cheng C Q, Zhao X, Yang M. Ultrasmall metal-organic framework Zn-MOF-74 nanodots: Size-controlled synthesis and application for highly selective colorimetric sensing of Iron(Ⅲ) in aqueous solution[J]. ACS Appl. Nano Mater., 2018,1(7):3747-3753. doi: 10.1021/acsanm.8b01083

    35. [35]

      Li L N, Shen S S, Ai W P, Song S Y, Bai Y, Liu H W. Facilely synthesized Eu3+ post-functionalized UiO-66-type metal-organic framework for rapid and highly selective detection of Fe3+ in aqueous solution[J]. Sens. Actuator B-Chem., 2018,267:542-548. doi: 10.1016/j.snb.2018.04.064

    36. [36]

      Yang C X, Ren H B, Yan X P. Fluorescent metal-organic framework MIL-53(Al) for highly selective and sensitive detection of Fe3+ in aqueous solution[J]. Anal. Chem., 2013,85(15):7441-7446. doi: 10.1021/ac401387z

    37. [37]

      CHU H T, YIN J, LIN Q, SUI B R, TAN J M, SU L Q, MA W H. Research progress on lanthanide metal-organic framework materials as fluorescent probes[J]. Materials Review, 2022,36(16)20060292.  

    38. [38]

      Wu H N, Gao L L, Zhang J, Zhai L J, Gao T, Niu X Y, Hu T P. Syntheses, characterization, and slow magnetic relaxation or luminescence properties of three new 2D coordination polymers[J]. J. Mol. Struct., 2020,1219128613.

    39. [39]

      Zhan C, Ou S, Zou C, Zhao M, Wu C D. A luminescent mixed-lanthanide-organic framework sensor for decoding different volatile organic molecules[J]. Anal. Chem., 2014,86(13):6648-6653.

    40. [40]

      Dong M J, Zhao M, Ou S, Zou C, Wu C D. A luminescent dye@MOF platform: Emission fingerprint relationships of volatile organic molecules[J]. Angew. Chem. Int. Ed., 2014,53(6):1575-1579.

    41. [41]

      Li Y L, Zhao Y, Wang P, Kang Y S, Liu Q, Zhang X D, Sun W Y. Multifunctional metal-organic frameworks with fluorescent sensing and selective adsorption properties[J]. Inorg. Chem., 2016,55(22):11821-11830.

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    17. [17]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    18. [18]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    19. [19]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    20. [20]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

Metrics
  • PDF Downloads(1)
  • Abstract views(328)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return