Citation: Yao ZHANG, Chun-Mei WANG, Xin-Yao SUN, Yuan-Yuan GAO, Yan-Fang GAO. Dual-metal ions adjustable nickel and cobalt oxide nanosheets for asymmetric supercapacitors[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2415-2424. doi: 10.11862/CJIC.2023.201 shu

Dual-metal ions adjustable nickel and cobalt oxide nanosheets for asymmetric supercapacitors

  • Corresponding author: Yao ZHANG, zhangyao@imut.edu.cn
  • Received Date: 25 May 2023
    Revised Date: 23 October 2023

Figures(7)

  • A series of nickel and cobalt oxide (NCO) nanosheets were synthesized through a two-step hydrothermal- calcined method. Transition metal ions in NCO nanosheets were adjusted by changing the molar ratios of nickel and cobalt ions in precursor solutions. The crystalline phases, morphologies, and structures of the NCO nanosheets were characterized using X-ray diffraction, scanning electron microscope, and X-ray photoelectron spectroscopy. Furthermore, the electrochemical performances of the NCO nanosheets electrodes were tested. The result indicated that the NCO-2 (Ni1.95Co1Ox) nanosheets exhibited high specific capacitance of 1 096.88 F·g-1 under 0.5 A·g-1, which concurrently possessed a cycling ability of 78.26% after 5 000 cycles. Importantly, the asymmetric supercapacitor, which was constructed from the NCO-2 positive electrode and active carbon negative electrode, presented an energy density of 57.70 Wh·kg-1 at a power density of 576 W·kg-1.
  • 加载中
    1. [1]

      Zhou Y, Qi H L, Yang J Y, Bo Z, Huang F, Saifullslam M, Lu X Y, Dai L M, Amal R, Wang C H, Han Z J. Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage[J]. Energy Environ. Sci., 2021,14(4):1854-1896. doi: 10.1039/D0EE03167D

    2. [2]

      Zhang Y, Mei H X, Cao Y, Yan X H, Yan J, Gao H L, Luo H W, Wang S W, Jia X D, Kachalova L, Yang J, Xue S C, Zhou C G, Wang L X, Gui Y H. Recent advances and challenges of electrode materials for flexible supercapacitors[J]. Coord. Chem. Rev., 2021,438213910. doi: 10.1016/j.ccr.2021.213910

    3. [3]

      Zhu Q C, Zhao D Y, Cheng M Y, Zhou J Q, Asare O K, Mai L Q, Yu Y. A new view of supercapacitors: Integrated supercapacitors[J]. Adv. Energy Mater., 2019,9(36)1901081. doi: 10.1002/aenm.201901081

    4. [4]

      Gu Z Y, Guo J Z, Sun Z H, Zhao X X, Wang X T, Liang H J, Wu X L, Liu Y C. Air/water/temperature-stable cathode for all-climate sodiumion batteries[J]. Cell Rep. Phy. Sci., 2021,2(12)100665. doi: 10.1016/j.xcrp.2021.100665

    5. [5]

      Wang X T, Yang Y, Guo J Z, G Z Y, Ang E H, Sun Z H, Li W H, Liang , H J, Wu X L. An advanced cathode composite for co-utilization of cations and anions in lithium batteries[J]. J. Mater. Sci. Technol., 2022,102:72-79. doi: 10.1016/j.jmst.2021.05.074

    6. [6]

      Yu S Y, Yang N J, Liu S T, Jiang X. Diamond supercapacitors: Progress and perspectives[J]. Curr. Opin. Solid State Mater. Sci., 2021,25(3)100922. doi: 10.1016/j.cossms.2021.100922

    7. [7]

      Zhang L, Hu X S, Wang Z P, Sun F C, Dorrell D G. A review of supercapacitor modeling, estimation, and applications: A control/management perspective[J]. Renew. Sust. Energ. Rev., 2018,81:1868-1878. doi: 10.1016/j.rser.2017.05.283

    8. [8]

      Liang G, Li X, Wang Y, Yang S, Huang Z D, Yang Q, Wang D H, Dong B B, Zhu M S, Zhi C Y. Building durable aqueous K-ion capacitors based on Mxene family[J]. Nano Res. Energy, 2022,1(1)e9120002.

    9. [9]

      Wang S, Ma J, Shi X, Zhu Y Y, Wu Z S. Recent status and future perspectives of ultracompact and customizable micro - supercapacitors[J]. Nano Res. Energy, 2022,1(2)e9120018.

    10. [10]

      Elango B T, Himadri T D, Maiyalagan T. Recent trends in bimetallic oxides and their composites as electrode materials for supercapacitor applications[J]. ChemElectroChem, 2021,8(10):1723-1746. doi: 10.1002/celc.202100098

    11. [11]

      Liang R B, Du Y Q, Xiao P, Cheng J Y, Yuan S J, Chen Y L, Yuan J, Chen J W. Transition metal oxide electrode materials for supercapacitors: A review of recent developments[J]. Nanomaterials, 2021,11(5)1248. doi: 10.3390/nano11051248

    12. [12]

      WANG G X, ZHOU G M, YUAN R Z, ZHAI M Z, ZHANG B L, YU Z L. Studies on LiNi0.8Co0.2O2/MWNTs composite electrode materials for supercapacitors[J]. Chinese J. Inorg. Chem., 2005,4(21):594-597.  

    13. [13]

      Yin X M, Li H J, Yuan R M, Jiao Y M, Lu J H. Templated synthesis of spinel cobaltite MCo2O4 (M=Ni, Co and Mn) hierarchical nanofibers for high performance supercapacitors[J]. J. Materiomics, 2021,7(4):858-868. doi: 10.1016/j.jmat.2020.12.007

    14. [14]

      Sun T R, Shen L X, Jiang Y, Ma J L, Lv F J, Ma H T Ma, Chen D W, Zhu N. Wearable textile supercapacitors for self-Powered enzymefree smartsensors[J]. ACS Appl. Mater. Interfaces, 2022,1921779.

    15. [15]

      Stoeckli F, Centeno A T. Pore size distribution and capacitance in microporous carbons[J]. Phys. Chem. Chem. Phys., 2012,14(33)1158911591.

    16. [16]

      XIE D K, FAN A L, PANG W, GUO Y Q, GAO D C. Flocculent ternary nickel-nobalt-iron hydroxide electrode material preparation and performance for electrochemical energy storge[J]. Chinese J. Inorg. Chem., 2021,38(1):31-38.  

    17. [17]

      Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nat. Mater., 2008,7(11):845-854. doi: 10.1038/nmat2297

    18. [18]

      Wang B, Chen J S, Wang Z Y, Madhavi S, Lou X W. Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties[J]. Adv. Energy Mater., 2012,2(10):1188-1192. doi: 10.1002/aenm.201200008

    19. [19]

      Lang J W, Kong L B, Liu M, Luo Y, Kang L. Co0.56Ni0.44 oxide nanoflake materials and activated carbon for asymmetric supercapacitor[J]. J. Electrochem. Soc., 2010,157(12):A1341-A1346. doi: 10.1149/1.3497298

    20. [20]

      Wei T Y, Chen C H, Chien H C, Lu S Y, Hu C C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide- driven sol- gel process[J]. Adv. Mater., 2010,22(3):347-351. doi: 10.1002/adma.200902175

    21. [21]

      Wu Z X, Khalafallah D, Teng C Q, Wang X Q, Zou Q, Chen J H, Zhi M G, Hong Z L. Vanadium doped hierarchical porous nickel-cobalt layered double hydroxides nanosheet arrays for high - performance supercapacitor[J]. J. Alloy. Compd., 2020,838155604. doi: 10.1016/j.jallcom.2020.155604

    22. [22]

      Zhang Y, Shi Z J, Liu L, Gao Y F, Liu J R. High conductive architecture: Bimetal oxide with metallic properties@bimetal hydroxide for high-performance pseudocapacitor[J]. Electrochim. Acta, 2017,231487494.

    23. [23]

      Augustyn V, Simon P. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy Environ. Sci., 2014,7(5)15971614.

    24. [24]

      Feng Y M, Liu W F, Wang Y, Gao W N, Li J T, Liu K L, Wang X P, Liu W F, Jiang J. Oxygen vacancies enhance super capacitive performance of CuCo2O4 in high-energy-density asymmetric supercapacitors[J]. J. Power Sources, 2020,458228005. doi: 10.1016/j.jpowsour.2020.228005

    25. [25]

      Zhang Y, Hu Y X, Wang Z L, Lin T G, Zhu X B, Luo B, Hu H, Xing W, Yan Z F, Wang L Z. Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor[J]. Adv. Funct. Mater., 2020,302004172. doi: 10.1002/adfm.202004172

    26. [26]

      Zhang Li X, Zheng W H, Jiu H F, Ni C H, Chang J X, Qi G. The synthesis of NiO and NiCo2O4 nanosheets by a new method and their excellent capacitive performance for asymmetric supercapacitor[J]. Electrochim. Acta, 2016,215:212-222. doi: 10.1016/j.electacta.2016.08.099

    27. [27]

      Cheng M, Duan S B, Fan H S, Su X R, Cui Y M, Wang R M. Core@shell CoO@Co3O4 nanocrystals assembling mesoporous microspheres for high performance asymmetric supercapacitors[J]. Chem. Eng. J., 2017,327:100-108. doi: 10.1016/j.cej.2017.06.042

    28. [28]

      Yin B S, Wang Z B, Zhang S W, Liu C, Ren Q Q, Ke K. In situ growth of free - standing all metal oxide asymmetric supercapacitor[J]. ACS Appl. Mater., 2016,8(39):26019-26029. doi: 10.1021/acsami.6b08037

    29. [29]

      Wang H L, Holt C M B, Li Z, Tan X H, Amirkhiz B S, Xu Z W, Olsen B C, Stephenson T, Mitlin D. Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading[J]. Nano Res., 2012,5(9):605-617. doi: 10.1007/s12274-012-0246-x

    30. [30]

      Gawali R S, Dubal P D, Deonikar G. V, Patil S S, Patil S D, Romero P G, Patil D R, Pant J. Asymmetric supercapacitor based on nanostructured Ce-doped NiO (Ce: NiO) as positive and reduced graphene oxide (rGO) as negative electrode[J]. ChemistrySelect, 2016,1(13)34713478.

  • 加载中
    1. [1]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    2. [2]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    3. [3]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    4. [4]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    5. [5]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    8. [8]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    9. [9]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    10. [10]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    11. [11]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    12. [12]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    13. [13]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Long LiKang YangChenpeng XiMengchao LiBorong LiGui XuYuanbin XiaoXiancai CuiZhiliang LiuLingyun LiYan YuChengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814

    16. [16]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    17. [17]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    18. [18]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    19. [19]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    20. [20]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

Metrics
  • PDF Downloads(1)
  • Abstract views(279)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return