Citation: Jie-Li LÜ, Bian YANG, Jie CUI, Shao-Dong SUN. Controlled reshaping and plasmon tuning of gold nanotetrapods using the thin layer of Ag[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2256-2264. doi: 10.11862/CJIC.2023.199 shu

Controlled reshaping and plasmon tuning of gold nanotetrapods using the thin layer of Ag

Figures(8)

  • The effects of different temperatures and different solution components (introduction of I-) on the gold nanotetrapods (GNTPs) reshaping process were investigated, revealing that the GNTPs reshaping mechanism is Ostwald ripening, that is, the dissolution of weakly bound surface atoms of Au at areas with high convex curvature and re-deposition at concave areas. This reshaping process can be stopped at any time in a few seconds by a thin layer of silver coating, and the morphology of GNTPs can be well stabilized to the greatest extent, thereby also preventing the evolution of optical properties. On this basis, the stability of GNTPs/Ag was further investigated by ultraviolet-visible-near-infrared (UV-Vis-NIR) absorption spectroscopy and synchrotron-based small-angle X-ray scattering (SAXS), as well as GNTPs/Ag results in an optical response, which is demonstrated by surface-enhanced Raman scattering (SERS) spectroscopy.
  • 加载中
    1. [1]

      FENG R X, FAN Y, FANG Y, XIA Y M. Strategy for regulating surface protrusion of gold nanoflowers and their surface-enhanced raman scattering[J]. Acta Phys.-Chim. Sin., 2024,402304020.

    2. [2]

      LAI W Z, ZHAO W, YANG R, LI X G. Preparation and optical properties of triangular silver nanoplates by a dual-reduction method[J]. Acta Phys.-Chim. Sin., 2010,26(4):1177-1183.  

    3. [3]

      RAO Y Y, LI Z L, HUANG J H, JIANG Y H, ZHAO X X. Preparation and SERS properties of 3D ordered gold nanoshells arrays[J]. Chinese J. Inorg. Chem., 2018,34(7):1231-1239.  

    4. [4]

      Cai J, Raghavan V, Bai Y J, Zhou M H, Liu X L, Liao C Y, Ma P, Shi L, Dockery P, Keogh I, Fan H M, Olivo M. Controllable synthesis of tetrapod gold nanocrystals with precisely tunable near-infrared plasmon resonance towards highly efficient surface enhanced Raman spectroscopy bioimaging[J]. J. Mater. Chem. B, 2015,3:7377-7385. doi: 10.1039/C5TB00785B

    5. [5]

      Xie J P, Zhang Q B, Lee J Y, Wang D I C. The synthesis of SERS-active gold nanoflower tags for in vivo applications[J]. ACS Nano, 2008,2:2473-2480. doi: 10.1021/nn800442q

    6. [6]

      Webb J A, Erwin W R, Zarick H F, Aufrecht J, Manning H W, Lang M J, Pint C L, Bardhan R. Geometry-dependent plasmonic tunability and photothermal characteristics of multibranched gold nanoantennas[J]. J. Phys. Chem. C, 2014,118:3696-3707.

    7. [7]

      Kumar P S, Pastoriza-Santos I, Rodríguez-González B, García de Abajo F J, Liz-Marzán L M. High-yield synthesis and optical response of gold nanostars[J]. Nanotechnology, 2008,19015606. doi: 10.1088/0957-4484/19/01/015606

    8. [8]

      Lyu J L, Rondepierre F, Jonin C, Brevet P F, Hamon C, Constantin D. Shape-controlled second-harmonic scattering from gold nanotetrapods[J]. J. Phys. Chem. C, 2022,126(23):9831-9835. doi: 10.1021/acs.jpcc.2c01867

    9. [9]

      Vanrompay H, Bladt E, Albrecht W, Béché A, Zakhozheva M, Sánchez-Iglesias A, Liz-Marzán L M, Bals S. 3D characterization of heat-induced morphological changes of Au nanostars by fast in situ electron tomography[J]. Nanoscale, 2018,10(48):22792-22801. doi: 10.1039/C8NR08376B

    10. [10]

      Kennedy W J, Izor S, Anderson B D, Frank G, Varshney V, Ehlert G J. Thermal reshaping dynamics of gold nanorods: Influence of size, shape, and local environment[J]. ACS Appl. Mater. Interfaces, 2018,10(50):43865-43873. doi: 10.1021/acsami.8b12965

    11. [11]

      Chang Y X, Zhang N N, Xing Y C, Zhang Q F, Oh A, Gao H M, Zhu Y, Baik H, Kim B, Yang Y, Chang W S, Sun T M, Zhang J H, Lu Z Y, Lee K, Link S, Liu K. Gold Nanotetrapods with unique topological structure and ultranarrow plasmonic band as multifunctional therapeutic agents[J]. J. Phys. Chem. Lett., 2019,10:4505-4510. doi: 10.1021/acs.jpclett.9b01589

    12. [12]

      González-Rubio G, Díaz-Núñez P, Rivera A, Prada A, Tardajos G, González-Izquierdo J, Bañares L, Llombart P, Macdowell L G, Palafox M A, Liz-Marzán L M, Peña-Rodríguez O, Guerrero-Martínez A. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances[J]. Science, 2017,358(6363):640-644. doi: 10.1126/science.aan8478

    13. [13]

      Scarabelli L, Sánchez-Iglesias A, Pérez-Juste J, Liz-Marzán L M. A "tips and tricks" practical guide to the synthesis of gold nanorods[J]. J. Phys. Chem. Lett., 2015,6:4270-4279. doi: 10.1021/acs.jpclett.5b02123

    14. [14]

      Hendel T, Wuithschick M, Kettemann F, Birnbaum A, Rademann K, Polte J. In situ determination of colloidal gold concentrations with UV-Vis spectroscopy: Limitations and perspectives[J]. Anal. Chem., 2014,86:11115-11124. doi: 10.1021/ac502053s

    15. [15]

      Kline S R. Reduction and analysis of SANS and USANS data using IGOR Pro[J]. J. Appl. Crystallogr., 2006,39:895-900. doi: 10.1107/S0021889806035059

    16. [16]

      Rodríguez-Lorenzo L, Romo-Herrera J M, Pérez-Juste J, Alvarez-Puebla R A, Liz-Marzán L M. Reshaping and LSPR tuning of Au nanostars in the presence of CTAB[J]. J. Mater. Chem., 2011,21:11544-11549. doi: 10.1039/c1jm10603a

    17. [17]

      Lyu J L, Geertsen V, Hamon C, Constantin D. Determining the morphology and concentration of core-shell Au/Ag nanoparticles[J]. Nanoscale Adv., 2020,2(10):4522-4528.

    18. [18]

      Hao F, Nehl C L, Hafner J H, Nordlander P. Plasmon resonances of a gold nanostar[J]. Nano Lett., 2007,7(3):729-732.

    19. [19]

      Rodríguez-Lorenzo L, Álvarez-Puebla R A, Pastoriza-Santos I, Mazzucco S, Stéphan O, Kociak M, Liz-Marzán L M, De Abajo F J G. Zeptomol detection through controlled ultrasensitive surface-enhanced raman scattering[J]. J. Am. Chem. Soc., 2009,131(13):4616-4618.

    20. [20]

      Lyu J L, Chaâbani W, Modin E, Chuvilin A, Bizien T, Smallenburg F, Impéror-Clerc M, Constantin D, Hamon C. Double-lattice packing of pentagonal gold bipyramids in supercrystals with triclinic symmetry[J]. Adv. Mater., 2022,342200883.

  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    6. [6]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    7. [7]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    8. [8]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    9. [9]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    12. [12]

      Zhexue Lu Ping Wu Huihui Li Libai Wen . 四“味”一体的无机及分析化学课程思政. University Chemistry, 2025, 40(6): 333-340. doi: 10.12461/PKU.DXHX202405196

    13. [13]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    14. [14]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    15. [15]

      Xiaofang LiZhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    16. [16]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    18. [18]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    19. [19]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    20. [20]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

Metrics
  • PDF Downloads(4)
  • Abstract views(718)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return