Citation: Jie-Li LÜ, Bian YANG, Jie CUI, Shao-Dong SUN. Controlled reshaping and plasmon tuning of gold nanotetrapods using the thin layer of Ag[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2256-2264. doi: 10.11862/CJIC.2023.199 shu

Controlled reshaping and plasmon tuning of gold nanotetrapods using the thin layer of Ag

Figures(8)

  • The effects of different temperatures and different solution components (introduction of I-) on the gold nanotetrapods (GNTPs) reshaping process were investigated, revealing that the GNTPs reshaping mechanism is Ostwald ripening, that is, the dissolution of weakly bound surface atoms of Au at areas with high convex curvature and re-deposition at concave areas. This reshaping process can be stopped at any time in a few seconds by a thin layer of silver coating, and the morphology of GNTPs can be well stabilized to the greatest extent, thereby also preventing the evolution of optical properties. On this basis, the stability of GNTPs/Ag was further investigated by ultraviolet-visible-near-infrared (UV-Vis-NIR) absorption spectroscopy and synchrotron-based small-angle X-ray scattering (SAXS), as well as GNTPs/Ag results in an optical response, which is demonstrated by surface-enhanced Raman scattering (SERS) spectroscopy.
  • 加载中
    1. [1]

      FENG R X, FAN Y, FANG Y, XIA Y M. Strategy for regulating surface protrusion of gold nanoflowers and their surface-enhanced raman scattering[J]. Acta Phys.-Chim. Sin., 2024,402304020.

    2. [2]

      LAI W Z, ZHAO W, YANG R, LI X G. Preparation and optical properties of triangular silver nanoplates by a dual-reduction method[J]. Acta Phys.-Chim. Sin., 2010,26(4):1177-1183.  

    3. [3]

      RAO Y Y, LI Z L, HUANG J H, JIANG Y H, ZHAO X X. Preparation and SERS properties of 3D ordered gold nanoshells arrays[J]. Chinese J. Inorg. Chem., 2018,34(7):1231-1239.  

    4. [4]

      Cai J, Raghavan V, Bai Y J, Zhou M H, Liu X L, Liao C Y, Ma P, Shi L, Dockery P, Keogh I, Fan H M, Olivo M. Controllable synthesis of tetrapod gold nanocrystals with precisely tunable near-infrared plasmon resonance towards highly efficient surface enhanced Raman spectroscopy bioimaging[J]. J. Mater. Chem. B, 2015,3:7377-7385. doi: 10.1039/C5TB00785B

    5. [5]

      Xie J P, Zhang Q B, Lee J Y, Wang D I C. The synthesis of SERS-active gold nanoflower tags for in vivo applications[J]. ACS Nano, 2008,2:2473-2480. doi: 10.1021/nn800442q

    6. [6]

      Webb J A, Erwin W R, Zarick H F, Aufrecht J, Manning H W, Lang M J, Pint C L, Bardhan R. Geometry-dependent plasmonic tunability and photothermal characteristics of multibranched gold nanoantennas[J]. J. Phys. Chem. C, 2014,118:3696-3707.

    7. [7]

      Kumar P S, Pastoriza-Santos I, Rodríguez-González B, García de Abajo F J, Liz-Marzán L M. High-yield synthesis and optical response of gold nanostars[J]. Nanotechnology, 2008,19015606. doi: 10.1088/0957-4484/19/01/015606

    8. [8]

      Lyu J L, Rondepierre F, Jonin C, Brevet P F, Hamon C, Constantin D. Shape-controlled second-harmonic scattering from gold nanotetrapods[J]. J. Phys. Chem. C, 2022,126(23):9831-9835. doi: 10.1021/acs.jpcc.2c01867

    9. [9]

      Vanrompay H, Bladt E, Albrecht W, Béché A, Zakhozheva M, Sánchez-Iglesias A, Liz-Marzán L M, Bals S. 3D characterization of heat-induced morphological changes of Au nanostars by fast in situ electron tomography[J]. Nanoscale, 2018,10(48):22792-22801. doi: 10.1039/C8NR08376B

    10. [10]

      Kennedy W J, Izor S, Anderson B D, Frank G, Varshney V, Ehlert G J. Thermal reshaping dynamics of gold nanorods: Influence of size, shape, and local environment[J]. ACS Appl. Mater. Interfaces, 2018,10(50):43865-43873. doi: 10.1021/acsami.8b12965

    11. [11]

      Chang Y X, Zhang N N, Xing Y C, Zhang Q F, Oh A, Gao H M, Zhu Y, Baik H, Kim B, Yang Y, Chang W S, Sun T M, Zhang J H, Lu Z Y, Lee K, Link S, Liu K. Gold Nanotetrapods with unique topological structure and ultranarrow plasmonic band as multifunctional therapeutic agents[J]. J. Phys. Chem. Lett., 2019,10:4505-4510. doi: 10.1021/acs.jpclett.9b01589

    12. [12]

      González-Rubio G, Díaz-Núñez P, Rivera A, Prada A, Tardajos G, González-Izquierdo J, Bañares L, Llombart P, Macdowell L G, Palafox M A, Liz-Marzán L M, Peña-Rodríguez O, Guerrero-Martínez A. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances[J]. Science, 2017,358(6363):640-644. doi: 10.1126/science.aan8478

    13. [13]

      Scarabelli L, Sánchez-Iglesias A, Pérez-Juste J, Liz-Marzán L M. A "tips and tricks" practical guide to the synthesis of gold nanorods[J]. J. Phys. Chem. Lett., 2015,6:4270-4279. doi: 10.1021/acs.jpclett.5b02123

    14. [14]

      Hendel T, Wuithschick M, Kettemann F, Birnbaum A, Rademann K, Polte J. In situ determination of colloidal gold concentrations with UV-Vis spectroscopy: Limitations and perspectives[J]. Anal. Chem., 2014,86:11115-11124. doi: 10.1021/ac502053s

    15. [15]

      Kline S R. Reduction and analysis of SANS and USANS data using IGOR Pro[J]. J. Appl. Crystallogr., 2006,39:895-900. doi: 10.1107/S0021889806035059

    16. [16]

      Rodríguez-Lorenzo L, Romo-Herrera J M, Pérez-Juste J, Alvarez-Puebla R A, Liz-Marzán L M. Reshaping and LSPR tuning of Au nanostars in the presence of CTAB[J]. J. Mater. Chem., 2011,21:11544-11549. doi: 10.1039/c1jm10603a

    17. [17]

      Lyu J L, Geertsen V, Hamon C, Constantin D. Determining the morphology and concentration of core-shell Au/Ag nanoparticles[J]. Nanoscale Adv., 2020,2(10):4522-4528.

    18. [18]

      Hao F, Nehl C L, Hafner J H, Nordlander P. Plasmon resonances of a gold nanostar[J]. Nano Lett., 2007,7(3):729-732.

    19. [19]

      Rodríguez-Lorenzo L, Álvarez-Puebla R A, Pastoriza-Santos I, Mazzucco S, Stéphan O, Kociak M, Liz-Marzán L M, De Abajo F J G. Zeptomol detection through controlled ultrasensitive surface-enhanced raman scattering[J]. J. Am. Chem. Soc., 2009,131(13):4616-4618.

    20. [20]

      Lyu J L, Chaâbani W, Modin E, Chuvilin A, Bizien T, Smallenburg F, Impéror-Clerc M, Constantin D, Hamon C. Double-lattice packing of pentagonal gold bipyramids in supercrystals with triclinic symmetry[J]. Adv. Mater., 2022,342200883.

  • 加载中
    1. [1]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    4. [4]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    5. [5]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    6. [6]

      Bingbing Chen Xuzhen Wang Chuan Shi Fuping Tian . Digital Empowerment: Reshaping the New Paradigm of Ideological and Political Education in Physical Chemistry Courses. University Chemistry, 2025, 40(9): 61-68. doi: 10.12461/PKU.DXHX202411002

    7. [7]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    8. [8]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    9. [9]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    10. [10]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    11. [11]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    12. [12]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    15. [15]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    16. [16]

      Zhexue Lu Ping Wu Huihui Li Libai Wen . 四“味”一体的无机及分析化学课程思政. University Chemistry, 2025, 40(6): 333-340. doi: 10.12461/PKU.DXHX202405196

    17. [17]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    18. [18]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    19. [19]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    20. [20]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

Metrics
  • PDF Downloads(4)
  • Abstract views(922)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return