Citation: Xing-Han CHEN, Min SHU, Feng LI, Rui ZHANG, Jian LIU. Synthesis and properties of electrochromic materials based on terpyridine-Fe(Ⅱ) coordination polymers[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2279-2286. doi: 10.11862/CJIC.2023.196 shu

Synthesis and properties of electrochromic materials based on terpyridine-Fe(Ⅱ) coordination polymers

Figures(7)

  • In this work, novel terpyridine-Fe(Ⅱ) coordination polymers were prepared by introducing an aromatic ring as a π-spacer between two terpyridine units to construct multi-dented ligands, which were coordinated with Iron(Ⅱ) tetrafluoroborate hexahydrate. The electrochromic properties of the terpyridine-Fe(Ⅱ) coordination polymers were investigated. The results indicated that the introduction of fluorine atoms on the aromatic ring had a certain effect on their electrochromic properties. Among them, coordination polymer Fe-F2 prepared derived from the ligand F2 containing two fluorine atoms showed excellent electrochromic properties (optical contrast up to 69%, response time as short as 0.5 s, coloration efficiency over 320 cm2·C-1).
  • 加载中
    1. [1]

      Chen H J, Wang W Y, Zhu J J, Han Y Y, Liu J. Electropolymerization of D-A type EDOT-based monomers consisting of camphor substituted quinoxaline unit for electrochromism with enhanced performance[J]. Polymer, 2022,240124485. doi: 10.1016/j.polymer.2021.124485

    2. [2]

      Fu W A, Chen H J, Han Y Y, Wang W Y, Zhang R, Liu J. Electropolymerization of D-A-D type monomers consisting of triphenylamine and substituted quinoxaline moieties for electrochromic devices[J]. New J. Chem., 2021,45(40):19082-19087. doi: 10.1039/D1NJ04074J

    3. [3]

      Zhu J J, Wang W Y, Chen H J, Han Y Y, Liu J. Electropolymerization of D-A-D type monomers consisting of thiophene and quionaxline moieties for electrochromic devices and supercapacitors[J]. J. Solid State Chem., 2022,307122739. doi: 10.1016/j.jssc.2021.122739

    4. [4]

      Cong S, Geng F X, Zhao Z G. Tungsten oxide materials for optoelectronic applications[J]. Adv. Mater., 2016,28(47):10518-10528. doi: 10.1002/adma.201601109

    5. [5]

      Guo W B, Cong Z F, Guo Z H, Zhang P P, Chen Y H, Hu W G, Wang Z L, Pu X. Multifunctional self-charging electrochromic supercapacitors driven by direct-current triboelectric nanogenerators[J]. Adv. Funct. Mater., 2021,31(36)2104348. doi: 10.1002/adfm.202104348

    6. [6]

      Jo M H, Kim K H, Ahn H J. P-doped carbon quantum dot graft-functionalized amorphous WO3 for stable and flexible electrochromic energy-storage devices[J]. Chem. Eng. J., 2022,445136826. doi: 10.1016/j.cej.2022.136826

    7. [7]

      Banasz R, Wałęsa-Chorab M. Polymeric complexes of transition metal ions as electrochromic materials: Synthesis and properties[J]. Coord. Chem. Rev., 2019,389:1-18. doi: 10.1016/j.ccr.2019.03.009

    8. [8]

      Lu H C, Kao S Y, Yu H F, Chang T H, Kung C W, Ho K C. Achieving low-energy driven viologens-based electrochromic devices utilizing polymeric ionic liquids[J]. ACS Appl. Mater. Interfaces, 2016,8(44):30351-30361. doi: 10.1021/acsami.6b10152

    9. [9]

      Lo C K, Shen D E, Reynolds J R. Fine-tuning the color hue of π-conjugated black-to-clear electrochromic random copolymers[J]. Macromolecules, 2019,52(17):6773-6779. doi: 10.1021/acs.macromol.9b01443

    10. [10]

      Sato T, Higuchi M. An alternately introduced heterometallo-supramolecular polymer: synthesis and solid-state emission switching by electrochemical redox[J]. Chem. Commun., 2013,49(46):5256-5258. doi: 10.1039/c3cc41176a

    11. [11]

      XING J N, SHU M, WANG W Y, ZHANG R, LIU J. Synthesis and properties of electrochromic material based on phenanthroline Fe(Ⅱ) complex with triphenylamine moiety[J]. Chinese J. Inorg. Chem., 2021,37(10):1847-1852.  

    12. [12]

      Malik N, Dov N E, de Ruiter G, Lahav M, van der Boom M E. On-surface self-assembly of stimuli-responsive metallo-organic films: Automated ultrasonic spray-coating and electrochromic devices[J]. ACS Appl. Mater. Interfaces, 2019,11(25):22858-22868. doi: 10.1021/acsami.9b05512

    13. [13]

      Schott M, Szczerba W, Posset U, Vuk A S, Beck M, Riesemeier H, Thünemann A F, kurth D G. In operando XAFS experiments on flexible electrochromic devices based on Fe(Ⅱ)-metallo-supramolecular polyelectrolytes and vanadium oxide[J]. Sol. Energy Mater. Sol. Cells, 2016,147:61-67. doi: 10.1016/j.solmat.2015.10.015

    14. [14]

      Shu M, Tao J Y, Han Y Y, Fu W A, Li X W, Zhang R, Liu J. Molecular engineering of terpyridine-Fe(Ⅱ) coordination polymers consisting of quinoxaline-based π-spacers toward enhanced electrochromic performance[J]. Polymer, 2022,256125231. doi: 10.1016/j.polymer.2022.125231

    15. [15]

      Xing J N, Yue Y F, Zhang R, Liu J. Molecular engineering of head-tail terpyridine-Fe(Ⅱ) coordination polymers employing alkyl chain linkers toward enhanced electrochromic performance[J]. Dyes Pigment., 2021,189109233. doi: 10.1016/j.dyepig.2021.109233

    16. [16]

      Mukkatt I, Mohanachandran A P, Nirmala A, Patra D, Sukumaran P A, Pillai R S, Rakhi R B, Shankar S, Ajayaghosh A. Tunable capacitive behavior in metallopolymer-based electrochromic thin film supercapacitors[J]. ACS Appl. Mater. Interfaces, 2022,14(28):31900-31910. doi: 10.1021/acsami.2c05744

    17. [17]

      Mondal S, Santra D C, Ninomiya Y, Yoshida T, Higuchi M. Dualredox system of metallo-supramolecular polymers for visible-to-near-IR modulable electrochromism and durable device fabrication[J]. ACS Appl. Mater. Interfaces, 2020,12(52):58277-58286. doi: 10.1021/acsami.0c18109

    18. [18]

      Chen W, Xue G. Low potential electrochemical syntheses of heteroaromatic conducting polymers in a novel solvent system based on trifluroborate-ethyl ether[J]. Prog. Polym. Sci., 2005,30(7):783-811. doi: 10.1016/j.progpolymsci.2005.03.002

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    5. [5]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    11. [11]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    12. [12]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    13. [13]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    14. [14]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    15. [15]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    16. [16]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    17. [17]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    18. [18]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    19. [19]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    20. [20]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

Metrics
  • PDF Downloads(1)
  • Abstract views(511)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return