Citation: Bao-Lian ZHANG, Chang LIU, Su LIU, Hai-Bo ZHOU, Jun-Jie SU, Yang-Dong WANG, Dong-Sen MAO. ZnCr2O4/ZSM-5@Silicalite-1 to optimize the selectivity of one-step hydrogenation of CO2 to aromatics[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2339-2348. doi: 10.11862/CJIC.2023.195 shu

ZnCr2O4/ZSM-5@Silicalite-1 to optimize the selectivity of one-step hydrogenation of CO2 to aromatics

Figures(9)

  • The CO2 hydrogenation reaction over the oxide-zeolite bifunctional catalyst yields a mixture of BTX (benzene, toluene, and xylene), C9, and C10+ aromatic products, among which BTX is of the highest commercial value. To improve the distribution of the aromatic products and promote the production of BTX, the core-shell structured zeolite ZSM-5@Silicalite-1 was prepared by the epitaxial growth method in this work. According to the characterization results of powder X-ray diffraction (PXRD), N2 adsorption-desorption, temperature-programmed desorption of NH3 (NH3-TPD), scanning electron microscope (SEM), transmission electron microscopy (TEM), and pyridine adsorption Fourier transform infrared spectroscopy (Py-IR), the inert Silicalite-1 shell is uniformly coated on the external surface of the ZSM-5 core, therefore changes its acidic properties especially reduces the external acidity, which contributes to improving the aromatic distribution. When applied in the one-step CO2-to-aromatic reaction, the combination of ZSM-5@Silicalite-1 and Zn-Cr oxide resulted in a CO2 conversion of 21.9% and aromatics selectivity of 79.3% under the conditions of VH2/VCO2=3.0, 1 200 mL·g-1·h-1, 320 ℃, and 4.0 MPa, and it gave a 33.5% of light aromatics in the overall aromatics, which was higher than 14.8% over the ZnCr2O4/ZSM-5 system. Additionally, in the one-step CO2-to-aromatic reaction system, the by-products of CO and H2O are generated from the side reaction of reverse water-gas shift (RWGS). Due to the higher hydrophobicity of Silicalite-1 than ZSM-5, H2O is enriched at the interface between the oxide and core-shell zeolite, which can shift the reaction equilibrium of RWGS, thus inhibiting the generation of CO. As a result, the CO selectivity was significantly reduced at high space velocities compared with the unmodified oxide-zeolite system. At an optimal shell thickness, the ZnCr2O4/ZSM-5@Silicalite-1 bifunctional catalyst obtained a space-time yield of aromatics of 2.4 mmol·g-1·h-1 at 8 400 mL·g-1·h-1, which was 22% higher compared with ZnCr2O4/ZSM-5.
  • 加载中
    1. [1]

      Bushuyev O S, De L P, Dinh C T, Tao L, Saur G, Van D, Lagemaat J, Kelley S O, Sargent E H. What should we make with CO2 and how can we make it[J]. Joule, 2018,2(5):825-832.  

    2. [2]

      Sutherland R B. Breaking compromises in CO2 reduction[J]. Joule, 2017,1(4):643-645.

    3. [3]

      Wang L, Mireille G, Wang H, Shao Y, Sun W, Athanasios A, Tountas , Thomas E, Wood , Li H, Loh J Y Y, Dong Y C, Xia M K, Li Y, Wang S H, Jia J, Qiu C Y, Qian C X, Kherani N P, He L, Zhang X H, Ozin G A. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure[J]. Joule, 2018,2(7):1369-1381.  

    4. [4]

      LI J L, LIANG Z H, LIANG D X, MA S L. Overview of development status of green hydrogen production and application technology under targets of carbon peak and carbon neutrality[J]. Distributed Energy, 2021,6(4):25-33.  

    5. [5]

      Li W H, Wang H Z, Jiang X, Zhu J, Liu Z M, Guo X W, Song C S. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts[J]. RSC Adv., 2018,8(14):7651-7669.

    6. [6]

      Zhang Z, Zheng Y, Qian L T, Luo D, Dou H Z, Wen G B, Yu A P, Chen Z W. Emerging trends in sustainable CO2-management materials[J]. Adv. Mater., 2022,34(29)2201547.

    7. [7]

      Yang X P, Song G Y, Li M Z, Chen C H, Wang Z H, Yuan H M, Zhang Z X, Liu D H. Selective production of aromatics directly from carbon dioxide hydrogenation over nNa-Cu-Fe2O3/HZSM-5[J]. Ind. Eng. Chem. Res., 2022,61(23):7787-7798.

    8. [8]

      Wei J, Ge Q J, Yao R W, Wen Z Y, Fang C Y, Guo L S, Xu H Y, Sun J. Directly converting CO2 into a gasoline fuel[J]. Nat. Commun., 2017,8(1)15174.

    9. [9]

      Numpilai T, Cheng C K, Limtrakul J, Witoon T. Recent advances in light olefins production from catalytic hydrogenation of carbon dioxide[J]. Process Saf. Environ. Protect., 2021,151:401-427.

    10. [10]

      Nezam I, Zhou W, Gusmao G S, Realff M J, Wang Y, Medford A J, Jones C W. Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis[J]. J. CO2 Util., 2021,45101405.

    11. [11]

      Niziolek A M, Onel O, Floudas C A. Production of benzene, toluene, and xylenes from natural gas via methanol: Process synthesis and global optimization[J]. AIChE J., 2016,62(5):1531-1556.

    12. [12]

      Wang D, Xie Z H, Porosoff M D, Chen J G. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics[J]. Chem, 2021,9:2277-2311.  

    13. [13]

      Larmier K, Liao W C, Tada S, Lam E, Verel R, Bansode A, Urakawa A, Comas-Vives A, Coperet C. CO2-to-methanol hydrogenation on zirconia-supported copper nanoparticles: Reaction intermediates and the role of the metal-support interface[J]. Angew. Chem. Int. Ed., 2017,56(9):2318-2323.

    14. [14]

      Wang J J, Li G, Li Z L, Tang C Z, Feng Z C, An H Y, Liu H L, Liu T F, Li C. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Sci. Adv., 2017,3(10)e1701290.

    15. [15]

      Shoinkhorova T, Cordero-Lanzac T, Ramirez A, Chung S, Dokania A, Ruiz-Martinez J, Gascon J. Highly selective and stable production of aromatics via high-pressure methanol conversion[J]. ACS Catal., 2021,11(6):3602-3613.

    16. [16]

      Liu C, Su J J, Liu S, Zhou H B, Yuan X L, Ye Y C, Wang Y, Wang Y D, He H Y, Xie Z K. Insights into the key factor of zeolite morphology on the selective conversion of syngas to light aromatics over a Cr2O3/ZSM-5 catalyst[J]. ACS Catal., 2020,10(24):15227-15237.

    17. [17]

      Liu C, Liu S, Zhou H B, Su J J, Jiao W Q, Zhang L, Wang Y D, He H Y, Xie Z K. Selective conversion of syngas to aromatics over metal oxide/HZSM‑5 catalyst by matching the activity between CO hydrogenation and aromatization[J]. Appl. Catal. A-Gen., 2019,585117206.

    18. [18]

      Cui X, Gao P, Li S G, Yang C G, Liu Z, Wang H, Zhong L S, Sun Y H. Selective production of aromatics directly from carbon dioxide hydrogenation[J]. ACS Catal., 2019,9(5):3866-3876.

    19. [19]

      Yang W, Gao W Z, Kazumi S, Li H J, Yang G H, Tsubaki N. Direct and oriented conversion of CO2 to value-added aromatics[J]. Chem. -Eur. J., 2019,25(20):5149-5153.

    20. [20]

      Wang Y, Tan L, Tan M H, Zhang P P, Fang Y, Yoneyama Y, Yang G H, Tsubaki N. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catal., 2018,9(2):895-901.

    21. [21]

      Liu C, Su J J, Xiao Yu, Zhou J, Liu S, Zhou H B, Wang Y D, Wang C M, Zheng X S, Xie Z K. Constructing directional component distribution in a bifunctional catalyst to boost the tandem reaction of syngas conversion[J]. Chem Catal., 2021,1(4):896-907.

    22. [22]

      REN K, ZHANG L L, LI Z, FU T J. Structure-activity relationship and reaction characteristics of propene aromatization catalyzed by ZSM-5[J]. Chinese J. Inorg. Chem., 2022,38(6):1090-1102. doi: 10.11862/CJIC.2022.115

    23. [23]

      Brus J, Kobera L, Schoefberger W, Urbanová M, Klein P, Sazama P, Sklenak S, Fishchuk A, Dědeek J. Structure of framework aluminum Lewis sites and perturbed aluminum atoms in zeolites as determined by 27Al{1H} REDOR (3Q) MAS NMR spectroscopy and DFT/molecular mechanics[J]. Angew. Chem. Int. Ed., 2015,54(2):541-545.

    24. [24]

      Corma A, Fornés V, Forni L, Márquez F, Márquez F, Martınez-Triguero J, Moscotti D. 2, 6-Di-tert-butyl-pyridine as a probe molecule to measure external acidity of zeolites[J]. J. Catal., 1998,179(2):451-458.  

    25. [25]

      Cheng K, Zhou Z, Kang J C, He S, Shi S L, Zhang Q H, Pan Y, Wen W, Wang Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 2017,3(2):334-347.

    26. [26]

      Huang Z, Wang S, Qin F, Huang L, Yue Y H, Hua W M, Qiao M H, He H Y, Shen W, Xu H L. Ceria-zirconia/zeolite bifunctional catalyst for highly selective conversion of syngas into aromatics[J]. ChemCatChem, 2018,10(20):4519-4524.

    27. [27]

      Zhang P P, Tan L, Yang G H, Tsubaki N. One-pass selective conversion of syngas to para-xylene[J]. Chem. Sci., 2017,8(12):7941-7946.

  • 加载中
    1. [1]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    2. [2]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    3. [3]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    4. [4]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    7. [7]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    8. [8]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    12. [12]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    13. [13]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    14. [14]

      Haoran Zhang Yaxin Jin Peng Kang Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099

    15. [15]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    16. [16]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    19. [19]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    20. [20]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

Metrics
  • PDF Downloads(13)
  • Abstract views(1760)
  • HTML views(467)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return