ZnCr2O4/ZSM-5@Silicalite-1 to optimize the selectivity of one-step hydrogenation of CO2 to aromatics
- Corresponding author: Yang-Dong WANG, wangyd.sshy@sinopec.com Dong-Sen MAO, dsmao@sit.edu.cn
Citation:
Bao-Lian ZHANG, Chang LIU, Su LIU, Hai-Bo ZHOU, Jun-Jie SU, Yang-Dong WANG, Dong-Sen MAO. ZnCr2O4/ZSM-5@Silicalite-1 to optimize the selectivity of one-step hydrogenation of CO2 to aromatics[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(12): 2339-2348.
doi:
10.11862/CJIC.2023.195
Bushuyev O S, De L P, Dinh C T, Tao L, Saur G, Van D, Lagemaat J, Kelley S O, Sargent E H. What should we make with CO2 and how can we make it[J]. Joule, 2018,2(5):825-832.
Sutherland R B. Breaking compromises in CO2 reduction[J]. Joule, 2017,1(4):643-645.
Wang L, Mireille G, Wang H, Shao Y, Sun W, Athanasios A, Tountas , Thomas E, Wood , Li H, Loh J Y Y, Dong Y C, Xia M K, Li Y, Wang S H, Jia J, Qiu C Y, Qian C X, Kherani N P, He L, Zhang X H, Ozin G A. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure[J]. Joule, 2018,2(7):1369-1381.
LI J L, LIANG Z H, LIANG D X, MA S L. Overview of development status of green hydrogen production and application technology under targets of carbon peak and carbon neutrality[J]. Distributed Energy, 2021,6(4):25-33.
Li W H, Wang H Z, Jiang X, Zhu J, Liu Z M, Guo X W, Song C S. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts[J]. RSC Adv., 2018,8(14):7651-7669.
Zhang Z, Zheng Y, Qian L T, Luo D, Dou H Z, Wen G B, Yu A P, Chen Z W. Emerging trends in sustainable CO2-management materials[J]. Adv. Mater., 2022,34(29)2201547.
Yang X P, Song G Y, Li M Z, Chen C H, Wang Z H, Yuan H M, Zhang Z X, Liu D H. Selective production of aromatics directly from carbon dioxide hydrogenation over nNa-Cu-Fe2O3/HZSM-5[J]. Ind. Eng. Chem. Res., 2022,61(23):7787-7798.
Wei J, Ge Q J, Yao R W, Wen Z Y, Fang C Y, Guo L S, Xu H Y, Sun J. Directly converting CO2 into a gasoline fuel[J]. Nat. Commun., 2017,8(1)15174.
Numpilai T, Cheng C K, Limtrakul J, Witoon T. Recent advances in light olefins production from catalytic hydrogenation of carbon dioxide[J]. Process Saf. Environ. Protect., 2021,151:401-427.
Nezam I, Zhou W, Gusmao G S, Realff M J, Wang Y, Medford A J, Jones C W. Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis[J]. J. CO2 Util., 2021,45101405.
Niziolek A M, Onel O, Floudas C A. Production of benzene, toluene, and xylenes from natural gas via methanol: Process synthesis and global optimization[J]. AIChE J., 2016,62(5):1531-1556.
Wang D, Xie Z H, Porosoff M D, Chen J G. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics[J]. Chem, 2021,9:2277-2311.
Larmier K, Liao W C, Tada S, Lam E, Verel R, Bansode A, Urakawa A, Comas-Vives A, Coperet C. CO2-to-methanol hydrogenation on zirconia-supported copper nanoparticles: Reaction intermediates and the role of the metal-support interface[J]. Angew. Chem. Int. Ed., 2017,56(9):2318-2323.
Wang J J, Li G, Li Z L, Tang C Z, Feng Z C, An H Y, Liu H L, Liu T F, Li C. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Sci. Adv., 2017,3(10)e1701290.
Shoinkhorova T, Cordero-Lanzac T, Ramirez A, Chung S, Dokania A, Ruiz-Martinez J, Gascon J. Highly selective and stable production of aromatics via high-pressure methanol conversion[J]. ACS Catal., 2021,11(6):3602-3613.
Liu C, Su J J, Liu S, Zhou H B, Yuan X L, Ye Y C, Wang Y, Wang Y D, He H Y, Xie Z K. Insights into the key factor of zeolite morphology on the selective conversion of syngas to light aromatics over a Cr2O3/ZSM-5 catalyst[J]. ACS Catal., 2020,10(24):15227-15237.
Liu C, Liu S, Zhou H B, Su J J, Jiao W Q, Zhang L, Wang Y D, He H Y, Xie Z K. Selective conversion of syngas to aromatics over metal oxide/HZSM‑5 catalyst by matching the activity between CO hydrogenation and aromatization[J]. Appl. Catal. A-Gen., 2019,585117206.
Cui X, Gao P, Li S G, Yang C G, Liu Z, Wang H, Zhong L S, Sun Y H. Selective production of aromatics directly from carbon dioxide hydrogenation[J]. ACS Catal., 2019,9(5):3866-3876.
Yang W, Gao W Z, Kazumi S, Li H J, Yang G H, Tsubaki N. Direct and oriented conversion of CO2 to value-added aromatics[J]. Chem. -Eur. J., 2019,25(20):5149-5153.
Wang Y, Tan L, Tan M H, Zhang P P, Fang Y, Yoneyama Y, Yang G H, Tsubaki N. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catal., 2018,9(2):895-901.
Liu C, Su J J, Xiao Yu, Zhou J, Liu S, Zhou H B, Wang Y D, Wang C M, Zheng X S, Xie Z K. Constructing directional component distribution in a bifunctional catalyst to boost the tandem reaction of syngas conversion[J]. Chem Catal., 2021,1(4):896-907.
REN K, ZHANG L L, LI Z, FU T J. Structure-activity relationship and reaction characteristics of propene aromatization catalyzed by ZSM-5[J]. Chinese J. Inorg. Chem., 2022,38(6):1090-1102. doi: 10.11862/CJIC.2022.115
Brus J, Kobera L, Schoefberger W, Urbanová M, Klein P, Sazama P, Sklenak S, Fishchuk A, Dědeek J. Structure of framework aluminum Lewis sites and perturbed aluminum atoms in zeolites as determined by 27Al{1H} REDOR (3Q) MAS NMR spectroscopy and DFT/molecular mechanics[J]. Angew. Chem. Int. Ed., 2015,54(2):541-545.
Corma A, Fornés V, Forni L, Márquez F, Márquez F, Martınez-Triguero J, Moscotti D. 2, 6-Di-tert-butyl-pyridine as a probe molecule to measure external acidity of zeolites[J]. J. Catal., 1998,179(2):451-458.
Cheng K, Zhou Z, Kang J C, He S, Shi S L, Zhang Q H, Pan Y, Wen W, Wang Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 2017,3(2):334-347.
Huang Z, Wang S, Qin F, Huang L, Yue Y H, Hua W M, Qiao M H, He H Y, Shen W, Xu H L. Ceria-zirconia/zeolite bifunctional catalyst for highly selective conversion of syngas into aromatics[J]. ChemCatChem, 2018,10(20):4519-4524.
Zhang P P, Tan L, Yang G H, Tsubaki N. One-pass selective conversion of syngas to para-xylene[J]. Chem. Sci., 2017,8(12):7941-7946.
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
Zixuan Zhao , Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
Haoran Zhang , Yaxin Jin , Peng Kang , Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012
Xudong Lv , Tao Shao , Junyan Liu , Meng Ye , Shengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
(a) ZSM-5, (b) CS-1, (c) CS-2.
Reaction conditions: 320 ℃, 4.0 MPa, VH2/VCO2=3.0, 1 200 mL·g-1·h-1.
Reaction conditions: 320 ℃, 4.0 MPa, VH2/VCO2=3.0, 1 200-8 400 mL·g-1·h-1.
Reaction conditions: 320 ℃, 4.0 MPa, VH2/VCO2=3.0, 1200 mL·g-1·h-1.