Citation: Ying HE, Yu ZHANG, Qing HE, Hui LIU, Liang LI. Metal-organic-frameworks-derived Co(OH)2/nitrogen-doped carbon graphene nanocomposites for high-performance supercapacitors[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2432-2440. doi: 10.11862/CJIC.2023.192 shu

Metal-organic-frameworks-derived Co(OH)2/nitrogen-doped carbon graphene nanocomposites for high-performance supercapacitors

Figures(6)

  • An effective method to prepare β-Co(OH)2/nitrogen-doped carbon graphene (Co(OH)2/C-N@GP) nanocom- posites is presented in this work. First, we synthesized a composite of ZIF-67 and polystyrene by reacting Co(NO3)2·6H2O with 2-methylimidazole in a polystyrene-COOH ethanol dispersion. The ZIF-67/polystyrene composite was carbonized and subsequently reacted with thioacetamide and graphene to produce Co(SO4)2/C-N@GP. Finally, Co(SO4)2/C-N@GP was soaked in KOH aqueous solution to obtain Co(OH)2/C-N@GP nanocomposites. The scanning electron microscope image of obtained Co(OH)2/C-N@GP showed Co(OH)2 with sizes of 10-20 nm well dispersed on the graphene. Electrochemical analysis indicated that Co(OH)2/C-N as an electrode material exhibits typical Faraday charge-transfer behavior for supercapacitors. The specific capacitance of Co(OH)2/C-N can be enhanced when graphene is present. The Co(OH)2/C-N@GP exhibited a high specific capacitance of 985.4 F·g-1 at 2 A·g-1 in 3 mol·L-1 KOH with a specific capacitance retention rate of 76.6% after 1 000 cycles.
  • 加载中
    1. [1]

      Zhao Y, Zhang L, Liu J, Adair K, Zhao F, Sun Y, Wu T, Bi X, Amine K, Lu J, Sun X. Atomic/molecular layer deposition for energy storage and conversion[J]. Chem. Soc. Rev., 2021,50(6):3889-3956. doi: 10.1039/D0CS00156B

    2. [2]

      Miao L, Song Z, Zhu D, Li L, Gan L, Liu M. Ionic liquids for supercapacitive energy storage: A mini - review[J]. Energy Fuels, 2021,35(10):8443-8455. doi: 10.1021/acs.energyfuels.1c00321

    3. [3]

      Chatterjee D P, Nandi A K. A review on the recent advances in hybrid supercapacitors[J]. J. Mater. Chem. A, 2021,9(29):15880-15918. doi: 10.1039/D1TA02505H

    4. [4]

      Xu B, Zhang H, Mei H, Sun D. Recent progress in metal - organic framework - based supercapacitor electrode materials[J]. Coord. Chem. Rev., 2020,420213438. doi: 10.1016/j.ccr.2020.213438

    5. [5]

      Wang R, Yao M, Niu Z. Smart supercapacitors from materials to devices[J]. InfoMat, 2020,2(1):113-125. doi: 10.1002/inf2.12037

    6. [6]

      Wang Y, Zhang L, Hou H, Xu W, Duan G, He S, Liu K, Jiang S. Recent progress in carbon - based materials for supercapacitor electrodes: A review[J]. J. Mater. Sci., 2021,56(1):173-200. doi: 10.1007/s10853-020-05157-6

    7. [7]

      Naskar P, Maiti A, Chakraborty P, Kundu D, Biswas B, Banerjee A. Chemical supercapacitors: A review focusing on metallic compounds and conducting polymers[J]. J. Mater. Chem. A, 2021,9(4):1970-2017. doi: 10.1039/D0TA09655E

    8. [8]

      Yin J, Zhang W, Alhebshi N A, Salah N, Alshareef H N. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods, 2020,4(3)1900853. doi: 10.1002/smtd.201900853

    9. [9]

      Zhang Y, Mei H, Cao Y, Yan X, Yan J, Gao H, Luo H, Wang S, Jia X, Kachalova L, Yang J, Xue S, Zhou C, Wang L, Gui Y. Recent advances and challenges of electrode materials for flexible supercapacitors[J]. Coord. Chem. Rev., 2021,438213910. doi: 10.1016/j.ccr.2021.213910

    10. [10]

      Zhang P, Mu J, Kong X, Wang X, Wong S I, Sunarso J, Xing W, Zhou J, Zhao Y, Zhuo S. Novel electrode materials and redox-active electrolyte for high- performance supercapacitor[J]. ChemElectroChem, 2022,9(2)e202101646. doi: 10.1002/celc.202101646

    11. [11]

      Xu H, Wang C, He G, Chen H, Du Y. Hierarchical hollow CoWO4-Co(OH)2 heterostructured nanoboxes enabling efficient water oxidation electrocatalysis[J]. Inorg. Chem., 2022,61(35):14224-14232. doi: 10.1021/acs.inorgchem.2c02666

    12. [12]

      Yang Y, Zhu P, Zhang L, Zhou F, Li T, Bai R, Sun R, Wong C. Electrodeposition of Co(OH)2 improving carbonized melamine foam performance for compressible supercapacitor application[J]. ACS Sustain. Chem. Eng., 2019,7(19):16803-16813. doi: 10.1021/acssuschemeng.9b04321

    13. [13]

      Shang Y, Ma S, Wei Y, Yang H, Xu Z. Flower-like ternary metal of Ni-Co-Mn hydroxide combined with carbon nanotube for supercapacitor[J]. Ionics, 2020,26(7):3609-3619. doi: 10.1007/s11581-020-03496-7

    14. [14]

      Bai X, Liu J, Liu Q, Chen R, Jing X, Li B, Wang J. In-situ fabrication of MOF-derived Co-Co layered double hydroxide hollow nanocages/graphene composite: A novel electrode material with superior electrochemical performance[J]. Chem. - Eur. J., 2017,23(59)14839. doi: 10.1002/chem.201702676

    15. [15]

      Du Y, Li G, Zhao L, Ye L, Che C, Liu X, Liu H, Yang X. Core-shell MnO2 nanotubes@nickel-cobalt-zinc hydroxide nanosheets for supercapacitive energy storage[J]. ACS Appl. Nano Mater., 2020,3(8)74627473.

    16. [16]

      Qian J, Hu C, Kong Z, Xu J, Wang Y. Novel core-shell-structured zeolitic imidazolate framework (ZIF) - 90@ZIF- 67 applied for highperformance all-solid-state asymmetric supercapacitor[J]. Energy Technol., 2022,10(10)2200652. doi: 10.1002/ente.202200652

    17. [17]

      Li J, Wu Q, Wang X, Wang B, Liu T. Metal - organic framework-derived Co/CoO nanoparticles with tunable particle size for strong low-frequency microwave absorption in the S and C bands[J]. J. Colloid Interface Sci., 2022,628(Pt A):10-21.

    18. [18]

      Xiong S, Lin X, Liu S, Weng S, Jiang S, Jiao Y, Xu Y, Cheng J. Metalorganic framework derived α - Fe2O3 nano - octahedron with oxygen vacancies for realizing outstanding energy storage performance[J]. Vacuum, 2020,182109692. doi: 10.1016/j.vacuum.2020.109692

    19. [19]

      Wang K, Wang H, Bi R, Chu Y, Wang Z, Wu H, Pang H. Controllable synthesis and electrochemical capacitor performance of MOF-derived MnOx/N - doped Carbon/MnO2 composites[J]. Inorg. Chem. Front., 2019,6(10):2873-2884. doi: 10.1039/C9QI00596J

    20. [20]

      Lan M, Wang X, Zhao R, Dong M, Fang L, Wang L. Metal-organic framework - derived porous MnNi2O4 microflower as an advanced electrode material for high - performance supercapacitors[J]. J. Alloy. Compd., 2020,821153546. doi: 10.1016/j.jallcom.2019.153546

    21. [21]

      Liu X, Yin Z, Cui M, Gao L, Liu A, Su W N, Chen S, Ma T, Li Y. Double shelled hollow CoS2@MoS2@NiS2 polyhedron as advanced trifunctional electrocatalyst for zinc - air battery and self - powered overall water splitting[J]. J. Colloid Interface Sci, 2021,S0021-9797(21):02025-7.

    22. [22]

      Sundriyal S, Kaur H, Bhardwaj S K, Mishra S, Kim K H, Deep A. Metal - organic frameworks and their composites as efficient electrodes for supercapacitor applications[J]. Coord. Chem. Rev., 2018,369:15-38. doi: 10.1016/j.ccr.2018.04.018

    23. [23]

      Salunkhe R R, Kaneti Y V, Yamauchi Y. Metal-organic frameworkderived nanoporous metal oxides toward supercapacitor applications: progress and prospects[J]. ACS Nano, 2017,11(6):5293-5308. doi: 10.1021/acsnano.7b02796

    24. [24]

      Salunkhe R R, Kaneti Y V, Kim J, Kim J H, Yamauchi Y. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications[J]. Acc. Chem. Res., 2016,49(12):2796-2806. doi: 10.1021/acs.accounts.6b00460

    25. [25]

      Cao X, Tan C, Sindoro M, Zhang H. Hybrid micro-/nano-structures derived from metal - organic frameworks: Preparation and applications in energy storage and conversion[J]. Chem. Soc. Rev., 2017,46(10):2660-2677. doi: 10.1039/C6CS00426A

    26. [26]

      Wang K, Bi R, Huang M, Lv B, Wang H, Li C, Wu H, Zhang Q. Porous cobalt metal-organic frameworks as active elements in battery-supercapacitor hybrid devices[J]. Inorg. Chem., 2020,59(10):6808-6814. doi: 10.1021/acs.inorgchem.0c00060

    27. [27]

      Wang K, Li Q, Ren Z, Li C, Chu Y, Wang Z, Zhang M, Wu H, Zhang Q. 2D metal-organic frameworks (MOFs) for high-performance batcap hybrid devices[J]. Small, 2020,16(30)2001987. doi: 10.1002/smll.202001987

    28. [28]

      Liu X, Feng C, Xiao F, Or S W, Sun Y, Jin C, Xia A. Giant reversible magnetocaloric effect in flower - like β - Co(OH)2 hierarchical superstructures self-assembled by nanosheets[J]. Mater. Res., 2013,17(1):186-189. doi: 10.1590/S1516-14392013005000171

    29. [29]

      Deng T, Zhang W, Arcelus O, Kim J G, Carrasco J, Yoo S J, Zheng W, Wang J, Tian H, Zhang H, Cui X, Rojo T. Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors[J]. Nat. Commun., 2017,815194.

    30. [30]

      Cao J, Mei Q, Wu R, Wang W. Flower - like nickel - cobalt layered hydroxide nanostructures for super long-life asymmetrical supercapacitors[J]. Electrochim. Acta, 2019,321134711.

    31. [31]

      Jayaramulu K, Horn M, Schneemann A, Saini H, Bakandritsos A, Ranc V, Petr M, Stavila V, Narayana C, Scheibe B, Kment Š, Otyepka M, Motta N, Dubal D, Zbořil R, Fischer R A. Covalent graphene MOF hybrids for high-performance asymmetric supercapacitors[J]. Adv. Mater., 2021,33(4)e2004560.

    32. [32]

      Pillai A S, Rajagopalan R, Amruthalakshmi A, Joseph J, Ajay A, Shakir I, Nair S V, Balakrishnan A. Mesoscopic architectures of Co(OH)2 Spheres with an extended array of microporous threads as pseudocapacitor electrode materials[J]. Colloid Surf. A - Physicochem. Eng. Asp., 2015,470:280-289.

  • 加载中
    1. [1]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    2. [2]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    3. [3]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    4. [4]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    5. [5]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    6. [6]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    11. [11]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    12. [12]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    13. [13]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    14. [14]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    15. [15]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    16. [16]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    19. [19]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    20. [20]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

Metrics
  • PDF Downloads(3)
  • Abstract views(273)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return