Citation: Pei-Pei CUI, Yue SUN, Yi ZHA, Sheng-Nan LIU, Meng-Xin ZHANG, Ji-Yun CAO, Qi WANG, Xiao-Qing WANG. Synthesis, structural characterization, and fluorescence property of three coordination polymers with dicarboxylate ligands[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2358-2366. doi: 10.11862/CJIC.2023.191 shu

Synthesis, structural characterization, and fluorescence property of three coordination polymers with dicarboxylate ligands

  • Corresponding author: Pei-Pei CUI, 1cuipeipei1@163.com
  • Received Date: 16 June 2023
    Revised Date: 18 October 2023

Figures(7)

  • Three coordination polymers (CPs), namely, {[Ni(L1)(H2O)4]·2H2O}n (1), [Zn(L1)(DMA)2]n (2), and [Co(L2)(DMF)2]n (3) (DMA=N, N-dimethylacetamide, DMF=N, N-dimethylformamide) were synthesized based on dicarboxylate ligands 2, 2′-(1, 4-phenylenebis(methylene))bis(sulfanediyl)dibenzoic acid (H2L1) and 2, 2′-(2, 3, 5, 6-tetramethyl-1, 4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H2L2) under solvothermal conditions. Complexes 1-3 have been structurally characterized by single-crystal X-ray diffraction analyses and characterized by elemental analysis, infrared spectra, thermogravimetric analysis, powder X-ray diffraction, and solid-state UV-Vis spectrum. They have zigzag chain structures and the ligands all display anti-conformation. Besides, the chains in 1-3 further form 3D frameworks by hydrogen bonding interactions. Furthermore, the solid-state fluorescence property of 2 was investigated.
  • 加载中
    1. [1]

      Notash B, Rodbari M F, Gallo G, Dinnebier R. Humidity-induced structural transformation in pseudopolymorph coordination polymers[J]. Inorg. Chem., 2021,60(12):9212-9223. doi: 10.1021/acs.inorgchem.1c01360

    2. [2]

      Jin M, Ando R, Ito H. Distinct fold-mode formation of crystalline Cu(Ⅰ) helical coordination polymers with alternation of the solid-state emission using shape of the counter anions[J]. Inorg. Chem., 2022,61(1):3-9. doi: 10.1021/acs.inorgchem.1c02725

    3. [3]

      Thomas B, Chang B S, Chang J J, Thuo M, Rossini A J. Solid-state nuclear magnetic resonance spectroscopy-assisted structure determination of coordination polymers[J]. Chem. Mater., 2022,34(17):7678-7691. doi: 10.1021/acs.chemmater.2c00593

    4. [4]

      Leong W L, Vittal J J. One-dimensional coordination polymers: Complexity and diversity in structures, properties, and applications[J]. Chem. Rev., 2011,111(2):688-764. doi: 10.1021/cr100160e

    5. [5]

      Chakraborty G, Park I H, Medishetty R, Vittal J J. Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications[J]. Chem. Rev., 2021,121(7):3751-3891. doi: 10.1021/acs.chemrev.0c01049

    6. [6]

      Chakraborty C, Rana U, Moriyama S, Higuchi M. Multifunctional Pt(Ⅱ)-based metallo-supramolecular polymer with carboxylic acid groups: Electrochemical, mechanochemical, humidity, and pH response[J]. ACS Appl. Polym. Mater., 2020,2(9):4149-4159. doi: 10.1021/acsapm.0c00782

    7. [7]

      Lin Z J, Lü J, Hong M C, Cao R. Metal-organic frameworks based on flexible ligands (FL-MOFs): Structures and applications[J]. Chem. Soc. Rev., 2014,43(16):5867-5895. doi: 10.1039/C3CS60483G

    8. [8]

      Ji Z Y, Fan Y R, Wu M Y, Hong M C. A flexible microporous framework with temperature-dependent gate-opening behaviours for C2 gases[J]. Chem. Commun., 2021,57(31):3785-3788. doi: 10.1039/D1CC00014D

    9. [9]

      Lippert B, Sanz Miguel P J. Metallatriangles and metallasquares: The diversity behind structurally characterized examples and the crucial role of ligand symmetry[J]. Chem. Soc. Rev., 2011,40(9):4475-4487. doi: 10.1039/c1cs15090a

    10. [10]

      Chen K F, Mousavi S H, Singh R, Snurr R Q, Li G, Webley P A. Gating effect for gas adsorption in microporous materials-mechanisms and applications[J]. Chem. Soc. Rev., 2022,51(3):1139-1166. doi: 10.1039/D1CS00822F

    11. [11]

      Guo Z G, Cao R, Wang X, Li H F, Yuan W B, Wang G J, Wu H H, Li J. A multifunctional 3D ferroelectric and NLO-active porous metal-organic framework[J]. J. Am. Chem. Soc., 2009,131(20):6894-6895. doi: 10.1021/ja9000129

    12. [12]

      Zheng B S, Bai J F, Duan J G, Wojtas L, Zaworotko M J. Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups[J]. J. Am. Chem. Soc., 2011,133(4):748-751. doi: 10.1021/ja110042b

    13. [13]

      Zhang M X, Zhou W, Pham T, Forrest K A, Liu W L, He Y B, Wu H, Yildirim T, Chen B L, Space B, Pan Y, Zaworotko M J, Bai J F. Fine tuning of MOF-505 analogues to reduce low-pressure methane uptake and enhance methane working capacity[J]. Angew.Chem. Int. Ed., 2017,56(38):11426-11430. doi: 10.1002/anie.201704974

    14. [14]

      Zhang M X, Forrest K A, Liu P H, Dang R, Cui H H, Qin G P, Pham T, Tang Y F, Wang S. Significantly enhanced carbon dioxide selective adsorption via gradual acylamide truncation in MOFs: Experimental and theoretical research[J]. Inorg. Chem., 2022,61(49):19944-19950. doi: 10.1021/acs.inorgchem.2c03217

    15. [15]

      Khan S, Frontera A, Matsuda R, Kitagawa S, Mir M H. Topochemical[2+2] cycloaddition in a two-dimensional metal-organic framework via SCSC transformation impacts halogen…halogen interactions[J]. Inorg. Chem., 2022,61(7):3029-3032. doi: 10.1021/acs.inorgchem.2c00128

    16. [16]

      Cui Y J, Yue Y F, Qian G D, Chen B L. Luminescent functional metal-organic frameworks[J]. Chem. Rev., 2012,112(2):1126-1162. doi: 10.1021/cr200101d

    17. [17]

      Biedermann F, Schneider H J. Experimental binding energies in supramolecular complexes[J]. Chem. Rev., 2016,116(9):5216-5300. doi: 10.1021/acs.chemrev.5b00583

    18. [18]

      Cui P P, Zhao Y, Lv G C, Liu Q, Zhao X L, Lu Y, Sun W Y. Synthesis, characterization and selective hysteretic sorption property of metal-organic frameworks with 3, 5-di(pyridine-4-yl)benzoate[J]. CrystEngComm, 2014,16(28):6300-6308. doi: 10.1039/c3ce42260g

    19. [19]

      CUI P P, ZHAO Y, WANG P, JIN R, JIAO D J, ZHANG X L, YAN W N. Synthesis, structure and hydrogen-bonding interaction of three metal-orotic acid complexes[J]. Chinese J. Inorg. Chem., 2020,36(9):1774-1782.  

    20. [20]

      Chen J S, Peng Q Y, Peng X W, Zhang H, Zeng H. Probing and manipulating noncovalent interactions in functional polymeric systems[J]. Chem. Rev., 2022,122(18):14594-14678. doi: 10.1021/acs.chemrev.2c00215

    21. [21]

      Wong K L, Law G L, Yang Y Y, Wong W T. A highly porous luminescent terbium-organic framework for reversible anion sensing[J]. Adv. Mater., 2006,18(8):1051-1054. doi: 10.1002/adma.200502138

    22. [22]

      Reek J N H, de Bruin B, Pullen S, Mooibroek T J, Kluwer A M, Caumes X. Transition metal catalysis controlled by hydrogen bonding in the second coordination sphere[J]. Chem. Rev., 2022,122(14):12308-12369. doi: 10.1021/acs.chemrev.1c00862

    23. [23]

      Cui P P, Wu J L, Zhao X L, Sun D, Zhang L L, Guo J, Sun D F. Two solvent-dependent zinc(Ⅱ) supramolecular isomers: Rare kgd and Lonsdaleite network topologies based on a tripodal flexible ligand[J]. Cryst Growth Des., 2011,11(12):5182-5187. doi: 10.1021/cg201181s

    24. [24]

      Cui P P, Dou J M, Sun D, Dai F N, Sun D F, Wu Q Y. Reaction vessel- and concentration-induced supramolecular isomerism in layered lanthanide-organic frameworks[J]. CrystEngComm, 2011,13(23):6968-6971. doi: 10.1039/c1ce05839h

    25. [25]

      Cui P P, Liu Y, Zhai H G, Zhu J P, Yan W N, Yang Y M. Two copper-organic frameworks constructed from the flexible dicarboxylic ligands[J]. Chin. J. Struc. Chem., 2020,39(2):368-374.

    26. [26]

      Cui P P, Fu A Y, Wang P. Topology and photoluminescence property of a neodymium-carboxylate coordination polymer based on tripodal flexible ligand[J]. Chin. J. Struct. Chem., 2016,35(9):1391-1398.

    27. [27]

      Yang C, Wong W T. Self-assembly of guanidinium hexagonal carboxylate: How many H-bonds and H-bonding pattern between ArCOO- and C(NH2)3?[J]. Chem. Lett., 2004,33(7):856-857. doi: 10.1246/cl.2004.856

    28. [28]

      Yang C, Wong W T, Chen X M, Cui Y D, Yang Y S. Star hexacarboxylate: synthesis, crystal structure and luminescent properties of its terbium complex[J]. Sci. China Ser. B-Chem., 2003,46(6):558-566. doi: 10.1360/03yb0050

    29. [29]

      Li Y W, Li J, Wan X Y, Sheng D F, Yan H, Zhang S S, Ma H Y, Wang S N, Li D C, Gao Z Y, Dou J M, Sun D. Nanocage-based N-rich metal-organic framework for luminescence sensing toward Fe3+ and Cu2+ ions[J]. Inorg. Chem., 2021,60(2):671-681. doi: 10.1021/acs.inorgchem.0c02629

    30. [30]

      ZHANG X, XUE J R, HE Z, ZHANG S F, LIANG Y, QIN D B, JING L H. Syntheses and characterization of metal hybrid calix[4]arene coordination polymers[J]. Chinese J. Inorg. Chem., 2017,33(4):673-678.  

    31. [31]

      Mawai K, Nathani S, Roy P, Singh U P, Ghosh K. Combined experimental and theoretical studies on selective sensing of zinc and pyrophosphate ions by rational design of compartmental chemosensor probe: Dual sensing behaviour via secondary recognition approach and cell imaging studies[J]. Dalton Trans., 2018,47:6421-6434. doi: 10.1039/C8DT01016A

    32. [32]

      YUAN Y N, WANG Z X, WANG Z Y, SONG Y Y, WANG Q L, YANG C. Zinc(Ⅱ) and cadmium(Ⅱ) complexes derived from 4'-(2-pyridyl)-2, 2': 6', 2″-terpyridine: Crystal structures and fluorescence property[J]. Chinese J. Inorg. Chem., 2022,38(9):1878-1886.  

    33. [33]

      CUI H L, XU X Y, LIU W, CHEN X L, YANG H, LIU L, WANG J J. Multifunctional Zn(Ⅱ) metal-organic framework fluorescent sensor to detect C6H5CHO, tetracycline, 2, 4, 6-trinitrophenol, fluazinam, Cr2O72- and Fe3+[J]. Chinese J. Inorg. Chem., 2023,39(7):1389-1406.  

    34. [34]

      Zhang F Y, Yang B, Mao X, Yang R X, Jiang L, Li Y J, Xiong J, Yang Y, He R X, Deng W Q, Han K L. Perovskite CH3NH3PbI3-xBrx single crystals with charge-carrier lifetimes exceeding 260 μs[J]. ACS Appl. Mater. Interfaces, 2017,9(17):14827-14832. doi: 10.1021/acsami.7b01696

    35. [35]

      Lu D F, Hong Z F, Xie J, Kong X J, Long L S, Zhang L S. High-nuclearity lanthanide-titanium oxo clusters as luminescent molecular thermometers with high quantum yields[J]. Inorg. Chem., 2017,56(20):12186-12192. doi: 10.1021/acs.inorgchem.7b01522

    36. [36]

      YANG X, ZHANG M H, CHEN K, LI R, ZHANG X D. Co(Ⅱ)-based metal-organic frameworks containing bipyridyl ligands and terephthalic acid as fluorescent probes for Fe((Ⅲ)[J]. Chinese J. Inorg. Chem., 2023,39(7):1244-1252.  

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    6. [6]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    13. [13]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    14. [14]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    15. [15]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    16. [16]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    17. [17]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(1)
  • Abstract views(284)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return