Citation: Xiu-Qi KANG, Jia-Hao WANG, Jin-Zhong GU. Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), nickel(Ⅱ) and cobalt(Ⅱ) coordination polymers constructed from 4, 4′-(pyridin-3, 5-diyl)dibenzoic acid[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(12): 2385-2392. doi: 10.11862/CJIC.2023.190 shu

Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), nickel(Ⅱ) and cobalt(Ⅱ) coordination polymers constructed from 4, 4′-(pyridin-3, 5-diyl)dibenzoic acid

  • Corresponding author: Jin-Zhong GU, gujzh@lzu.edu.cn
  • Received Date: 21 June 2023
    Revised Date: 7 October 2023

Figures(14)

  • Three zinc(Ⅱ), nickel(Ⅱ), and cobalt(Ⅱ) coordination polymers, namely {[Zn(μ3-pdba)(phen)]•H2O}n (1), {[Ni(μ3-pdba)(bipy)]•3H2O}n (2), and {[Co(μ3-pdba)(H2biim)(H2O)]•H2O}n (3) have been constructed hydrothermally using 4, 4′-(pyridin-3, 5-diyl)dibenzoic acid (H2pdba), 1, 10-phenanthroline (phen), 2, 2′-bipyridine (bipy), 2, 2′-biimdazole (H2biim), and zinc, nickel and cobalt chlorides at 160 ℃. The products were isolated as stable crystalline solids and were characterized by IR spectra, elemental analyses, thermogravimetric analyses, and single-crystal X-ray diffraction analyses. Single-crystal X-ray diffraction analyses reveal that the three compounds crystallize in the monoclinic system, space groups P21/c or P21/n. Compounds 1 and 2 show 2D networks. Compound 3 discloses a 1D ladder chain structure. The catalytic activities in the Henry reaction of these compounds were investigated. Compound 1 exhibited an effective catalytic activity in the Henry reaction at 70 ℃. For this reaction, various parameters were optimized, followed by the investigation of the substrate scope.
  • 加载中
    1. [1]

      Chakraborty G, Park I H, Medishetty R, Vittal J J. Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications[J]. Chem. Rev., 2021,121(7):3751-3891. doi: 10.1021/acs.chemrev.0c01049

    2. [2]

      Zheng J, Lu Z, Wu K, Ning G H, Li D. Coinage-metal-based cyclic trinuclear complexes with metal-metal interactions: Theories to experiments and structures to functions[J]. Chem. Rev., 2020,120(17):9675-9742. doi: 10.1021/acs.chemrev.0c00011

    3. [3]

      Gong W, Chen Z J, Dong J Q, Liu Y, Cui Y. Chiral metal-organic frameworks[J]. Chem. Rev., 2022,122(9):9078-9144. doi: 10.1021/acs.chemrev.1c00740

    4. [4]

      Gu J Z, Lu W G, Jiang L, Zhou H C, Lu T B. 3D porous metal-organic framework exhibiting selective adsorption of water over organic solvents[J]. Inorg. Chem., 2007,46(15):5835-5837. doi: 10.1021/ic7004908

    5. [5]

      Ji X X, Wu S Y, Song D X, Chen S Y, Chen Q, Gao E J, Xu J, Zhu X P, Zhu M C. A water-stable luminescent sensor based on Cd2+ coordination polymer for detecting nitroimidazole antibiotics in water[J]. Appl. Organomet. Chem., 2021,35(10)e6359. doi: 10.1002/aoc.6359

    6. [6]

      Alsharabasy A M, Pandit A, Farras P. Recent advances in the design and sensing applications of hemin/coordination polymer-based nanocomposites[J]. Adv. Mater., 2021,33(2)2003883. doi: 10.1002/adma.202003883

    7. [7]

      Gu Y F, Zheng J J, Otake K I, Shivanna M, Sakaki S, Yoshino H, Ohba M, Kawaguchi S, Wang Y, Li F T, Kitagawa S. Host-guest interaction modulation in porous coordination polymers for inverse selective CO2/C2H2 separation[J]. Angew. Chem. Int. Ed., 2021,60(21):11688-11694. doi: 10.1002/anie.202016673

    8. [8]

      Zhao X, Wang Y X, Li D S, Bu X H, Feng P Y. Metal-organic frameworks for separation[J]. Adv. Mater., 2018,30(37)1705189. doi: 10.1002/adma.201705189

    9. [9]

      Wei Y S, Zhang M, Zou R Q, Xu Q. Metal-organic framework-based catalysts with single metal sites[J]. Chem. Rev., 2020,120(21):12089-12174. doi: 10.1021/acs.chemrev.9b00757

    10. [10]

      Gu J Z, Wen M, Cai Y, Shi Z F, Nesterov D S, Kirillova M V, Kirillov A M. Cobalt(Ⅱ) coordination polymers assembled from unexplored pyridine-carboxylic acids: Structural diversity and catalytic oxidation of alcohols[J]. Inorg. Chem., 2019,58(9):5875-5885. doi: 10.1021/acs.inorgchem.9b00242

    11. [11]

      ZHAO S Q, GU J Z. Synthesis, structures and catalytic activity in Knoevenagel condensation reaction of two diphenyl ether tetracarboxylic acid-Co(Ⅱ) coordination polymers[J]. Chinese J. Inorg. Chem., 2022,38(1):161-170.  

    12. [12]

      Wang Y J, Wang S Y, Zhang Y, Xia B, Li Q W, Wang Q L, Ma Y. Two zinc coordination polymers with photochromic behaviors and photo-controlled luminescence properties[J]. CrystEngComm, 2020,22(31):5162-5169. doi: 10.1039/D0CE00725K

    13. [13]

      Jeong A R, Shin J W, Jeong J H, Jeoung S, Moon H R, Kang S, Min K S. Porous and nonporous coordination polymers induced by pseudohalide ions for luminescence and gas sorption[J]. Inorg. Chem., 2020,59(21):15987-15999. doi: 10.1021/acs.inorgchem.0c02503

    14. [14]

      Zhang Q L, Xiong Y, Liu J Q, Zhang T T, Liu L L, Huang Y W. Porous coordination/covalent hybridized polymers synthesized from pyridine-zinc coordination compound and their CO2 capture ability, fluorescence and selective response properties[J]. Chem. Commun., 2018,54(85):12025-12028. doi: 10.1039/C8CC05930F

    15. [15]

      Gu J Z, Cui Y H, Liang X X, Wu J, Lv D Y, Kirillov A M. Structurally distinct metal-organic and H-bonded networks derived from 5-(6-carboxypyridin-3-yl)isophthalic acid: Coordination and template effect of 4, 4'-bipyridine[J]. Cryst. Growth Des., 2016,16(8):4658-4670. doi: 10.1021/acs.cgd.6b00735

    16. [16]

      Cheng X Y, Guo L R, Wang H Y, Gu J Z, Yang Y, Kirillova M V, Kirillov A M. Coordination polymers from biphenyl-dicarboxylate linkers: Synthesis, structural diversity, interpenetration, and catalytic properties[J]. Inorg. Chem., 2022,61(32):12577-12590. doi: 10.1021/acs.inorgchem.2c01488

    17. [17]

      Wei Y S, Chen K J, Liao P Q, Zhu B Y, Lin R B, Zhou H L, Wang B Y, Xue W, Zhang J P, Chen X M. Turning on the flexibility of isoreticular porous coordination frameworks for drastically tunable framework breathing and thermal expansion[J]. Chem. Sci., 2013,4(4):1539-1546. doi: 10.1039/c3sc22222e

    18. [18]

      Ding T, Ren L D, Du X D, Quan L, Gao Z W, Zhang W Q, Zheng C Z. Six new coordination polymers based on a tritopic pyridyldicarboxylate ligand: Structural, magnetic and sorption properties[J]. CrystEngComm, 2014,16(33):7790-7801. doi: 10.1039/C4CE00890A

    19. [19]

      Fan L M, Zhang X T, Zhang W, Ding Y S, Fan W L, Sun L M, Zhao X. Syntheses, structures, and properties of a series of 2D and 3D coordination polymers based on trifunctional pyridinedicarboxylate and different (bis) imidazole bridging ligands[J]. CrystEngComm, 2014,16(11):2144-2157. doi: 10.1039/C3CE42203H

    20. [20]

      Sheldrick G M. SHELXS-97, A program for X-ray crystal structure solution, and SHELXL-97, A program for X-ray structure refinement. Göttingen University, Germany, 1997.

    21. [21]

      Spek A L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors[J]. Acta Crystallogr. Sect. C, 2015,C71(1):9-18.

    22. [22]

      ZOU X Z, WU J, GU J Z, ZHAO N, FENG A S, LI Y. Syntheses of two nickel(Ⅱ) coordination compounds based on a rigid linear tricarboxylic acid[J]. Chinese J. Inorg. Chem., 2019,35(9):1705-1711.  

    23. [23]

      Laha B, Khullar S, Gogia A, Mandal S K. Effecting structural diversity in a series of Co(Ⅱ)-organic frameworks by the interplay between rigidity of a dicarboxylate and flexibility of bis(tridentate) spanning ligands[J]. Dalton Trans., 2020,49(35):12298-12310. doi: 10.1039/D0DT02153A

    24. [24]

      Huang G Q, Chen J, Huang Y L, Wu K, Luo D, Jin J K, Zheng J, Xu S H, Lu W G. Mixed-linker isoreticular Zn(Ⅱ) metal-organic frameworks as Brønsted acid-base bifunctional catalysts for Knoevenagel condensation reactions[J]. Inorg. Chem., 2022,61(21):8339-8348. doi: 10.1021/acs.inorgchem.2c00941

    25. [25]

      Loukopoulos E, Kostakis G E. Review: Recent advances of one-dimensional coordination polymers as catalysts[J]. J. Coord. Chem., 2018,71:371-410. doi: 10.1080/00958972.2018.1439163

    26. [26]

      Gu J Z, Wan S M, Cheng X Y, Kirillova M V, Kirillov A M. Coordination polymers from 2-chloroterephthalate linkers: Synthesis, structural diversity, and catalytic CO2 fixation[J]. Cryst. Growth Des., 2021,21(5):2876-2888. doi: 10.1021/acs.cgd.1c00077

    27. [27]

      Pal S, Maiti S, Nayek H P. A three-dimensional (3D) manganese(Ⅱ) coordination polymer: Synthesis, structure and catalytic activities[J]. Appl. Organometal. Chem., 2018,32e4447. doi: 10.1002/aoc.4447

    28. [28]

      Srivastava S, Kumar V, Gupta R. A carboxylate-rich metalloligand and its heterometallic coordination polymers: Syntheses, structures, topologies, and heterogeneous catalysis[J]. Cryst. Growth Des., 2016,16(5):2874-2886. doi: 10.1021/acs.cgd.6b00176

    29. [29]

      Zhao J H, Yang Y, Che J X, Zuo J, Li X H, Hu Y Z, Dong X W, Gao L, Liu X Y. Compartmentalization of incompatible polymers within metal-organic frameworks towards homogenization of heterogeneous hybrid catalysts for tandem reactions[J]. Chem.-Eur. J., 2018,24(39):9903-9909. doi: 10.1002/chem.201801416

    30. [30]

      Farzaneh F, Maleki M K, Ghandi M. Multifunctional Cu(Ⅱ) organic-inorganic hybrid as a catalyst for Knoevenagel condensation[J]. React. Kinet. Mech. Catal., 2016,117(1):87-101. doi: 10.1007/s11144-015-0919-z

    31. [31]

      Das A, Anbu N, SK M, Dhakshinamoorthy A, Biswas S. A functionalized UiO-66 MOF for turn-on fluorescence sensing of superoxide in water and efficient catalysis for Knoevenagel condensation[J]. Dalton Trans., 2019,48(46):17371-17380. doi: 10.1039/C9DT03638E

  • 加载中
    1. [1]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    2. [2]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    3. [3]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    6. [6]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    7. [7]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    8. [8]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    9. [9]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    10. [10]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    11. [11]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    12. [12]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    13. [13]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    14. [14]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    15. [15]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    16. [16]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    17. [17]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    18. [18]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    19. [19]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    20. [20]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

Metrics
  • PDF Downloads(1)
  • Abstract views(389)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return