Citation: Jun LI, Hua ZHAO, Hui-Peng LI, Jing-Jin LIU, Yu-Cheng WANG. Erythrocyte-like Bi3OXy(WO6)1-y (X=Cl, Br, I) solid solution with strong adsorption and visible light catalytic activity[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2169-2180. doi: 10.11862/CJIC.2023.188 shu

Erythrocyte-like Bi3OXy(WO6)1-y (X=Cl, Br, I) solid solution with strong adsorption and visible light catalytic activity

  • Corresponding author: Hua ZHAO, zh.113@126.com
  • Received Date: 7 June 2023
    Revised Date: 18 October 2023

    Fund Project: 辽宁省教育厅项目 LJKMZ20220721

Figures(10)

  • Bi3OXy(WO6)1-y (X=Cl, Br, I) solid solution materials were successfully prepared by a simple two-step hydrothermal method, which enhanced the adsorption and photocatalytic properties while changing the morphology. The structures and properties of the three composites were characterized in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible diffuse reflection spectroscopy (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectroscopy (PL). Solid solutions were speculated in principle. Compared to the BW monomer, the formation of the BI solid solution in Bi3OXy((WO6)1-y resulted in a decreased band-gap, which led to an enhanced capacity for absorbing visible light. Furthermore, it helped to reduce the recombination rate of electron-hole pairs generated by light. Bi3OXy((WO6)1-y exhibited a strong adsorption capacity for rhodamine B (RhB) cationic dye. Adsorption kinetics of different materials were investigated through adsorption experiments conducted at high concentrations.
  • 加载中
    1. [1]

      ZHANG R N, HE S J, WANG X R, WANG F F, CHENG C D. Study on soft chemical preparation and properties of BatiO3-TiO2 complex[J]. Journal of Petrochemical Universities, 2022,35(4):46-51.  

    2. [2]

      ZHAO D Q, GU G Z, LI Z. Application of hydrotalcite-like photocatalyst in wastewater treatment[J]. Journal of Petrochemical Universities, 2022,35(3):36-42.  

    3. [3]

      Wang J C, Yao H C, Fan Z Y, Zhang L, Wang J S, Zang S Q, Li Z J. Indirect z-scheme BiOI/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation[J]. ACS Appl. Mater. Interfaces, 2016,8(6):3765-3775. doi: 10.1021/acsami.5b09901

    4. [4]

      Chen C P, Gunawan P, Xu R. Self-assembled Fe3O4-layered double hydroxide colloidal nanohybrids with excellent performance for treatment of organic dyes in water[J]. J. Mater. Chem., 2011,21(4):1218-1225. doi: 10.1039/C0JM01696A

    5. [5]

      Wei Y L, Huang Y F, Fang Y, Zhao Y Z, Luo D, Guo Q Y, Fan L Q, Wu J H. Hollow mesoporous TiO2/WO3 sphere heterojunction with high visible-light-driven photocatalytic activity[J]. Mater. Res. Bull., 2019,119:110571-110579. doi: 10.1016/j.materresbull.2019.110571

    6. [6]

      Xie Q, He W M, Liu S W, Li C H, Zhang J F, Wong P K. Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling[J]. Chin. J. Catal., 2020,41(1):140-153. doi: 10.1016/S1872-2067(19)63481-9

    7. [7]

      Khampuanbut A, Santalelat S, Pankiew A, Channei D, Pornsuwan S, Faungnawakij K, Phanichphant S, Inceesungvorn B. Visible-light-driven WO3/BiOBr heterojunction photocatalysts for oxidative coupling of amines to imines: Energy band alignment and mechanistic insight[J]. J. Colloid Interface Sci., 2020,560:213-224. doi: 10.1016/j.jcis.2019.10.057

    8. [8]

      Mokhtari F, Tahmasebi N. Hydrothermal synthesis of W-doped BiOCl nanoplates for photocatalytic degradation of rhodamine B under visible light[J]. J. Phys. Chem. Solids, 2021,149109804. doi: 10.1016/j.jpcs.2020.109804

    9. [9]

      Jia J, Xue P, Wang R M, Bai X, Hu X Y, Fan J, Liu E Z. The Bi/Bi2WO6 heterojunction with stable interface contact and enhanced visible-light photocatalytic activity for phenol and Cr(Ⅳ) removal[J]. J. Chem. Technol. Biotechnol., 2018,93(10):2988-2999. doi: 10.1002/jctb.5657

    10. [10]

      Zhou Q, Song Y, Li N J, Chen D Y, Xu Q F, Li H, He J H, Lu J M. Direct dual z-scheme Bi2WO6/GQDs/WO3 inverse opals for enhanced photocatalytic activities under visible light[J]. ACS Sustain. Chem. Eng., 2020,8(21):7921-7927. doi: 10.1021/acssuschemeng.0c01548

    11. [11]

      Fan T, Chen C C, Tang Z H. Hydrothermal synthesis of novel BiFeO3/BiVO4 heterojunctions with enhanced photocatalytic activities under visible light irradiation[J]. RSC Adv., 2016,6(12):9994-10000. doi: 10.1039/C5RA26500B

    12. [12]

      Huang H W, Liu L Y, Zhang Y H, Tian N. Novel BiIO4/BiVO4 composite photocatalyst with highly improved visible-light-induced photocatalytic performance for rhodamine B degradation and photocurrent generation[J]. RSC Adv., 2015,5(2):1161-1167. doi: 10.1039/C4RA12916D

    13. [13]

      Chen L, Meng D W, Wu X L, Wang A Q, Wang J X, Yu M H, Liang Y J. Enhanced visible light photocatalytic performances of self-assembled hierarchically structured BiVO4/Bi2WO6 heterojunction composites with different morphologies[J]. RSC Adv., 2016,6(57):52300-52309. doi: 10.1039/C6RA08685C

    14. [14]

      Pálmai M, Zahran E M, Angaramo S, Bálint S, Pászti Z, Knecht M R, Bachas L G. Pd-decorated m-BiVO4/BiOBr ternary composite with dual heterojunction for enhanced photocatalytic activity[J]. J. Mater. Chem. A, 2017,5(2):529-534. doi: 10.1039/C6TA08357A

    15. [15]

      Malathi A, Vasanthakumar V, Arunachalam P, Madhavan J, Ghanem M A. A low cost additive-free facile synthesis of BiFeWO6/BiVO4 nanocomposite with enhanced visible-light induced photocatalytic activity[J]. J. Colloid Interface Sci., 2017,506:553-563. doi: 10.1016/j.jcis.2017.07.079

    16. [16]

      Malathi A, Madhavan J, Ashokkumar M, Arunachalam P. A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications[J]. Appl. Catal. A-Gen, 2018,555:47-74. doi: 10.1016/j.apcata.2018.02.010

    17. [17]

      Kijima N, Matano K, Saito M, Oikawa T, Konishi T, Yasuda H, Sato T, Yoshimura Y. Oxidative catalytic cracking of n-butane to lower alkenes over layered BiOCl catalyst[J]. Appl. Catal. A-Gen, 2001,206(2):237-244. doi: 10.1016/S0926-860X(00)00598-6

    18. [18]

      Qin Q, Guo Y N, Zhou D D, Yang Y X, Guo Y H. Facile growth and composition-dependent photocatalytic activity of flowerlike BiOCl1-xBrx hierarchical microspheres[J]. Appl. Surf. Sci., 2016,390:765-777. doi: 10.1016/j.apsusc.2016.08.134

    19. [19]

      Liu Y Y, Son W J, Lu J B, Huang B B, Dai Y, Whangbo M H. Composition dependence of the photocatalytic activities of BiOCl1-xBrx solid solutions under visible light[J]. Chem.-Eur. J., 2011,17:9342-9349. doi: 10.1002/chem.201100952

    20. [20]

      Gnayem H, Sasson Y. Hierarchical nanostructured 3D flowerlike BiOClxBr1-x semiconductors with exceptional visible light photocatalytic activity[J]. ACS Catal., 2013,3:186-191. doi: 10.1021/cs3005133

    21. [21]

      Kumar A, Sharma G, Naushad M, Singh P, Kalia S. Polyacrylamide/Ni0.02Zn0.98O nanocomposite with high solar light photocatalytic activity and efficient adsorption capacity for toxic dye removal[J]. Ind. Eng. Chem. Res., 2014,53(40):15549-15560. doi: 10.1021/ie5018173

    22. [22]

      Qian X F, Kamegawa T, Mori K, Li H X, Yamashita H. Calcium phosphate coatings incorporated in mesoporous TiO2/SBA-15 by a facile inner-pore sol-gel process toward enhanced adsorption-photocatalysis performances[J]. J. Phys. Chem. C, 2013,117(38):19544-19551.

    23. [23]

      Wang W D, Huang F Q, Lin X P, Yang J H. Visible-light-responsive photocatalysts xBiOBr-(1-x)BiOI[J]. Catal. Commun., 2008,9(1):8-12. doi: 10.1016/j.catcom.2007.05.014

    24. [24]

      Xu B Y, An Y, Liu Y Y, Qin X Y, Zhang X Y, Dai Y, Wang Z Y, Wang P, Whangbo M H, Huang B B. Enhancing the photocatalytic activity of BiOX (X=Cl, Br, and I), (BiO)2CO3 and Bi2O3 by modifying their surfaces with polar organic anions 4-substituted thiophenolates[J]. J. Mater. Chem. A, 2017,5(27):14406-14414. doi: 10.1039/C7TA03970K

    25. [25]

      Tian J, Sang Y H, Yu G W, Jiang H D, Mu X N, Liu H. A Bi2WO6-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation[J]. Adv. Mater., 2013,25(36):5075-5080. doi: 10.1002/adma.201302014

    26. [26]

      Ren J, Wang W Z, Sun S M, Zhang L, Chang J. Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation[J]. Appl. Catal. B-Environ., 2009,92(1/2):50-55.

    27. [27]

      Lukowski M A, Daniel A S, English C R, Meng F, Forticaux A, Hamersa R J, Jin S. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets[J]. Energy Environ. Sci., 2014,7(8):2608-2613. doi: 10.1039/C4EE01329H

    28. [28]

      Gómez-Velázquez L S, Hernández-Gordillo A, Robinson M J, Leppert V J, Rodil S E, Bizarro M. The bismuth oxyhalide family: thin film synthesis and periodic properties[J]. Dalton Trans., 2018,47(35):12459-12467. doi: 10.1039/C8DT02642D

    29. [29]

      Dai G P, Y J G , Liu G. Synthesis and enhanced visible-light photoelectrocatalytic activity of p-n junction BiOI/TiO2 nanotube arrays[J]. J. Phys. Chem. C, 2011,115(15):7339-7346. doi: 10.1021/jp200788n

    30. [30]

      Zhang J, Huang Z H, Xu Y, Kang F Y. Hydrothermal synthesis of iodine-doped nanoplates with enhanced visible and ultraviolet-induced photocatalytic activities[J]. Int. J. Photoenergy, 2012,2012:1-12.

    31. [31]

      Huang H W, Xiao K, Yu S X, Dong F, Zhang T R, Zhang Y H. Iodide surface decoration: a facile and efficacious approach to modulating the band energy level of semiconductors for high-performance visible-light photocatalysis[J]. Chem. Commun., 2016,52(2):354-357. doi: 10.1039/C5CC08239K

    32. [32]

      Priyadarshini N, Sampath M, Kumar S, Kamachi-Mudali U. Particle size variation and prediction of molecular weight of Bi(Ⅲ) hydrolyzed polymer using light scattering technique[J]. International Scholarly Research Notices, 2013:1-5.

    33. [33]

      Zhang Q, Liu S J, Yu S H. Recent advances in oriented attachment growth and synthesis of functional materials concept evidence mechanism and future[J]. J. Mater. Chem., 2009,19(2):191-207. doi: 10.1039/B807760F

    34. [34]

      Liu S W, Yu J G. Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers[J]. J. Solid State Chem., 2008,181(5):1048-1055. doi: 10.1016/j.jssc.2008.01.049

    35. [35]

      Luo Y S, Dai X J, Zhang W D, Yang Y, Sun C Q, Fu S Y. Controllable synthesis and luminescent properties of novel erythrocyte-like CaMoO4 hierarchical nanostructures via a simple surfactant-free hydrothermal route[J]. Dalton Trans., 2010,39(9):2226-2231. doi: 10.1039/B915099D

    36. [36]

      Kudo A, Tsuji I, Kato H. AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation[J]. Chem. Commun., 2002,8(17):1958-1959.

    37. [37]

      Huang W L, Zhu Q S. Structural and electronic properties of BiOX (X=F, Cl, Br, I) considering Bi5f states[J]. Comput. Mater. Sci., 2009,46(4):1076-1084. doi: 10.1016/j.commatsci.2009.05.016

    38. [38]

      Yu J, Lin W F, Leng L H, Bao S K, Zou J P, Luo X B, Chen D Z, Luo S L, Au C T. Adsorption-degradation synergetic effects on removal of methylene blue over heterostructured TiO2/Co4S4.23Se3.77 composites[J]. J. Mol. Catal. A-Chem., 2014,394:121-128. doi: 10.1016/j.molcata.2014.07.012

    39. [39]

      Liu B X, Wang J S, Wu J S, Li H Y, Li Z F, Zhou M L, Zuo T Y. Controlled fabrication of hierarchical WO3 hydrates with excellent adsorption performance[J]. J. Mater. Chem. A, 2014,2(6):1947-1954. doi: 10.1039/C3TA13897F

  • 加载中
    1. [1]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    2. [2]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    3. [3]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    4. [4]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    5. [5]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    6. [6]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    14. [14]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    15. [15]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    16. [16]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    17. [17]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    18. [18]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    19. [19]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    20. [20]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

Metrics
  • PDF Downloads(0)
  • Abstract views(386)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return