Citation: Hua YANG, Yu-Pei FU, Dan QIAO, Lu-Lu DONG, Xiao-Li CHEN, Hua-Li CUI, Ji-Jiang WANG. Synthesis, crystal structure, magnetic properties, and photocatalytic activity of Ni2Zn2 cluster complex based on 2-pyridinealdoxime ligand[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2219-2230. doi: 10.11862/CJIC.2023.186 shu

Synthesis, crystal structure, magnetic properties, and photocatalytic activity of Ni2Zn2 cluster complex based on 2-pyridinealdoxime ligand

  • Corresponding author: Hua YANG, yanghua_08@163.com
  • Received Date: 21 March 2023
    Revised Date: 1 October 2023

Figures(13)

  • Under solvothermal conditions, the reaction of 2-pyridinealdoxime (HL) with NiCl2·6H2O and Zn(OAc)2· 2H2O has led to a Ni2Zn2 cluster complex with composition[Ni2Zn2(L)4Cl2(CH3O)2] (1). This complex was characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction, etc. The results show that 1 belongs to the orthorhombic system with the Pna21 space group. The structure of 1 contains two Ni ions, two Zn ions, two Cl- ions, four L- ligands, and two CH3O- anions. The magnetic properties and photocatalytic activity toward the degradation of dyes were investigated. Magnetic susceptibility measurements at 2-300 K for the microcrystals of 1 revealed antiferromagnetic Ni⋯Ni interactions. 1 exhibited excellent photocatalytic capability in the degradation of methyl orange (MO) and rhodamine B (RhB) within 180 min under ultraviolet radiation. The degradation efficiencies reached 83.9% and 71.1% respectively. The mechanism of photocatalytic dye degradation was further discussed.
  • 加载中
    1. [1]

      Siedzielnik M, Pantazis D A, Bruniecki J, Kaniewska-Laskowska K, Dolega A. The reactivity of the imine bond within polynuclear nickel(Ⅱ) complexes[J]. Crystals, 2021,11(5)512. doi: 10.3390/cryst11050512

    2. [2]

      Doud E A, Butler C J, Paley D W, Roy X. Nickel phosphinidene molecular clusters from organocyclophosphine precursors[J]. Chem. - Eur. J., 2019,2510840. doi: 10.1002/chem.201903053

    3. [3]

      Kato M, Fukui T, Sato H, Shoji Y, Fukushima T. Capturing the trajectory of metal-ion-cluster formation: Stepwise accumulation of Zn(Ⅱ) ions in a robust coordination space formed by a rigid tridentate carboxylate ligand[J]. Inorg. Chem., 2022,61:3649-3654. doi: 10.1021/acs.inorgchem.1c03758

    4. [4]

      Mondal S, Behera S P, Alamgir M, Baskar V. The importance of spodium bonds, H-bonds and π-stacking interactions in the solid state structures of four zinc complexes with tetradentate secondary diamine ligands[J]. ACS Omega, 2022,7:1090-1099. doi: 10.1021/acsomega.1c05673

    5. [5]

      Liu Y H, Lu L P, Zhu M L, Feng S S, Su F. A new family of 1D, 2D and 3D frameworks aggregated from Ni5, Ni4 and Ni7 building units: Synthesis, structure, and magnetism[J]. Dalton Trans., 2016,45:9267-9278. doi: 10.1039/C5DT04953A

    6. [6]

      Bilyachenko A N, Yalymov A, Dronova M, Korlyukov A A, Vologzhanina A V, Eskova M A, Long J, Larionova J, Guari Y, Dorovatovskii P V, Shubina E S, Levitsky M M. Family of polynuclear nickel cagelike phenylsilsesquioxanes; features of periodic networks and magnetic Properties[J]. Inorg. Chem., 2017,56:12751-12763. doi: 10.1021/acs.inorgchem.7b01436

    7. [7]

      Guo F S, Leng J D, Liu J L, Meng Z S, Tong M L. Polynuclear and polymeric gadolinium acetate derivatives with large magnetocaloric effect[J]. Inorg. Chem., 2012,51(1):405-413. doi: 10.1021/ic2018314

    8. [8]

      Zhang Y Z, Mallik U P, Clerac R, Rath N P, Holmes S M. Irreversible solvent-driven conversion in cyanometalate {Fe2Ni}n (n=2, 3) single-molecule magnets[J]. Chem. Commun., 2011,47:7194-7196. doi: 10.1039/c1cc10679a

    9. [9]

      Wang L L, Sun Y M, Gao J, Lin X J, Liu C B. Insights into the control of magnetic coupling in the Mn4 complex: From ferromagnetic to antiferromagnetic[J]. Dalton Trans., 2010,39:10249-10255. doi: 10.1039/c0dt00382d

    10. [10]

      Zhang Y Z, Mallik U P, Rath N, Yee G T, Clerac R, Holmes S M. A cyano-based octanuclear {Fe4Ni4} single-molecule magnet[J]. Chem. Commun., 2010,46:4953-4955. doi: 10.1039/c0cc00317d

    11. [11]

      Kou H Z, An G Y, Ji C M, Wang B W, Cui A L. Ferromagnetic coupling in oximato-bridged multi-decker Niclusters[J]. Dalton Trans., 2010,39:9604-9610. doi: 10.1039/c0dt00528b

    12. [12]

      Tancini E, Rodriguez-Douton M J, Sorace L, Barra A L, Sessoli R, Cornia A. Slow magnetic relaxation from hard-axis metal ions in tetranuclear single-molecule magnets[J]. Chem.-Eur. J., 2010,16:10482-10493. doi: 10.1002/chem.201001040

    13. [13]

      Palii A, Tsukerblat B, Clemente-Juan J M, Coronado E. Magnetic exchange between metal ions with unquenched orbital angular momenta: Basic concepts and relevance to molecular magnetism[J]. Int. Rev. Phys. Chem., 2010,29:135-230. doi: 10.1080/01442350903435256

    14. [14]

      Wu A J, Penner-Hahn J E, Pecoraro V L. Structural, spectroscopic, and reactivity models for the manganese catalases[J]. Chem. Rev., 2004,104:903-938. doi: 10.1021/cr020627v

    15. [15]

      Paul A, Figuerola A, Puschmann H, Manna S C. Double μ2-(phenoxido)-bridged dinuclear and polynuclear nicke(Ⅱ) complexes: Magnetic properties and DNA/protein interaction[J]. Polyhedron, 2019,157:39-48. doi: 10.1016/j.poly.2018.09.023

    16. [16]

      Majumder A, Dutta N, Dey S, Sow P, Samadder A, Vijaykumar G, Rangan K, Bera M. A family of[Zn6] complexes from the carboxylate-bridge-supported assembly of [Zn2] building units: Synthetic, structural, spectroscopic, and systematic biological studies[J]. Inorg. Chem., 2021,60:17608-17626. doi: 10.1021/acs.inorgchem.1c02201

    17. [17]

      Peri D, Meker S, Shavit M, Tshuva E Y. Synthesis, characterization, cytotoxicity, and hydrolytic behavior of C2- and C1-symmetrical Ti complexes of tetradentate diamine bis(phenolato) ligands: A new class of antitumor agents[J]. Chem.-Eur. J., 2009,15:2403-2415. doi: 10.1002/chem.200801310

    18. [18]

      Enzo E, Alessandro B, Lorena B, Giancarlo C, Daniela D C, Franco F, Bhagavathsingh J, Silvio A. Highly shifted LIPOCEST agents based on the encapsulation of neutral polynuclear paramagnetic shift reagents[J]. Chem. Commun., 2008,5:600-602.

    19. [19]

      Gong L G, Liu J M, Yu K, Su Z H, Zhou B B. Two new {As3W3} polyoxometalates decorated with metal-phen complexes: Synthesis, structure and properties[J]. J. Solid State Chem., 2019,270:280-286. doi: 10.1016/j.jssc.2018.11.026

    20. [20]

      Lin J F, Lin H Y, Yu L, Lu J J, Wang X. Four new cobalt(Ⅱ)/zinc(Ⅱ) complexes derived from the naphthalene-bridging bis(pyridyl)-bis(amide) ligand: Fluorescence sensing Fe3+ ions and CrO42- anions, photocatalytic degrading dyes[J]. J. Solid State Chem., 2022,307122869. doi: 10.1016/j.jssc.2021.122869

    21. [21]

      Alexandropoulos D I, Manos M J, Papatriantafyllopoulou C, Mukherjee S, Tasiopoulos A J, Perlepes S P, Christou G, Stamatatos T C. "Squaring the clusters": A Mn4Ni4 molecular square from nickel(Ⅱ)-induced structural transformation of a Mn12Ⅱ/Ⅲ/Ⅳ cage[J]. Dalton Trans., 2012,41:4744-4747. doi: 10.1039/c2dt00030j

    22. [22]

      Lampropoulos C, Stamatatos T C, Manos M J, Tasiopoulos A J, Abboud K A, Christou G. New mixed-valence Mn6Ⅱ/Ⅲ complexes bearing oximato and azido ligands: Synthesis, and structural and magnetic characterization[J]. Eur. J. Inorg. Chem., 2010,15:2244-2253.

    23. [23]

      Miao Y L, Liu J L, Lin Z J, Ou Y C, Leng J D, Tong M L. Synthesis, structures, adsorption behaviour and magnetic properties of a new family of polynuclear iron clusters[J]. Dalton Trans., 2010,39:4893-4902. doi: 10.1039/c000126k

    24. [24]

      Milios C J, Stamatatos T C, Perlepes S P. The coordination chemistry of pyridyl oximes[J]. Polyhedron, 2006,25:134-194. doi: 10.1016/j.poly.2005.07.022

    25. [25]

      Chen H, Ma C B, Yuan D Q, Hu M Q, Wen H M, Liu Q T, Chen C N. Syntheses, structures, and magnetic properties of a family of tetra-, hexa-, and nonanuclear Mn/Ni heterometallic clusters[J]. Inorg. Chem., 2011,50:10342-10352. doi: 10.1021/ic201403k

    26. [26]

      Ribas J, Escuer A, Monfort M, Vicente R, Cortes R, Lezama L, Rojo T. Polynuclear Ni and Mn azido bridging complexes, structural trends and magnetic behavior[J]. Coord. Chem. Rev., 1999,193-195:1027-1068. doi: 10.1016/S0010-8545(99)00051-X

    27. [27]

      Ruiz E, Cano J, Alvarez S, Alemany P. Magnetic coupling in end-on azido-bridged transition metal complexes: A density functional study[J]. J. Am. Chem. Soc., 1998,120:11122-11129. doi: 10.1021/ja981661n

    28. [28]

      Habib M, Karmakar T K, Aromi G, Arino J R, Fun H K, Chantrapromma S, Chandra S K. A versatile series of nickel(Ⅱ) complexes derived from tetradentate imine/pyridyl ligands and various pseudohalides: Azide and cyanate compared[J]. Inorg. Chem., 2008,47:4109-4117. doi: 10.1021/ic701754u

    29. [29]

      Audhya A, Maity M, Bhattacharya K, Clerac R, Chaudhury M. Tri- and tetranuclear nickel(Ⅱ) inverse metallacrown complexes involving oximato oxygen linkers: Role of the guest anion (oxo versus alkoxo) in controlling the size of the ring topology[J]. Inorg. Chem., 2010,49:9026-9035. doi: 10.1021/ic101273y

    30. [30]

      Stamatatos T C, Dionyssopoulou S, Efthymiou G, Kyritsis P, Raptopoulou C P, Terzis A, Vicente R, Escuer A, Perlepes S P. Acetate/di-2-pyridyl ketone oximate "blend" as a source of high-nuclearity nickel(Ⅱ) clusters: Dependence of the nuclearity on the nature of the inorganic anion present[J]. Inorg. Chem., 2007,46:2350-2352. doi: 10.1021/ic062262t

    31. [31]

      Pringouri K V, Raptopoulou C P, Escuer A, Stamatatos T C. Initial use of di-2-pyridyl ketone oxime in chromium carboxylate chemistry: Triangular {Cr3(μ3-O)}7+ compounds and unexpected formation of a carboxylate-free dichromium (Ⅱ, Ⅱ) complex[J]. Inorg. Chim. Acta, 2007,360:69-83. doi: 10.1016/j.ica.2006.07.063

    32. [32]

      Zhang S Y, Zhen L N, Xu B, Inglis R, Li K, Chen W Q, Perlepes S P, Brechin E K, Li Y H. Wheel-like Mn6 and Ni6 complexes from the use of 2-pyridinealdoxime and carboxylates[J]. Dalton Trans., 2010,39:3563-3571. doi: 10.1039/b922672a

    33. [33]

      Papatriantafyllopoulou C, Jones L F, Nguyen T D, Matamoros-Salvador N, Cunha-Silva L, Paz F A A, Rocha J, Evangelisti M, Brechin E K, Perlepes S P. Using pyridine amidoximes in 3d-metal cluster chemistry: A novel ferromagnetic Ni12 complex from the use of pyridine-2-amidoxime[J]. Dalton Trans., 2008,24:3153-3155.

    34. [34]

      Chaudhuri P, Weyhermuller T, Wagner R, Khanra S, Biswas B, Bothe E, Bill E. Tridentate facial ligation of tris(pyridine-2-aldoximato)nickel(Ⅱ) and tris(imidazole-2-aldoximato)nickel(Ⅱ) to generate NiFeNi, MnNi, NiNi, and ZnNi and the electrooxidized MnNi, NiNi, and ZnNi species: A magnetostructural, electrochemical, and EPR spectroscopic study[J]. Inorg. Chem., 2007,46:9003-9016. doi: 10.1021/ic701073j

    35. [35]

      CHEN X H, CHEN K Z, XIE C L. Synthesis, crystal structure and magnetic property of trinuclear nickel(Ⅱ) complex based on N-o-nitrobenzoylsalicylhydrazide and morpholine ligands[J]. Chinese J. Inorg. Chem., 2014,30(6):1464-1468.  

    36. [36]

      CHEN J W, LI Y, ZOU X Z, QIU W D, CHEN X L. Syntheses, crystal structures, luminescent and magnetic properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers constructed from 5-chloronicotinic acid[J]. Chinese J. Inorg. Chem., 2019,35(3):505-514.  

    37. [37]

      HAO S Y, ZHANG Y T, WANG X Q. Preparation and supercapacitor performance of Mo-doped NiMnSe2[J]. Chinese J. Inorg. Chem., 2023,39(6):1091-1102.  

    38. [38]

      Stamatatos T C, Papatriantafyllopoulou C, Katsoulakou E, Raptopoulou C P, Perlepes S P. 2-pyridyloximate clusters of cobalt and nickel[J]. Polyhedron, 2007,26:1830-1834. doi: 10.1016/j.poly.2006.09.060

    39. [39]

      CHEN S Y, KOU J W, CHEN F Q. Preparation of dehydrated Ni-Fe hydrotalcite-like compounds as an eco-friendly catalyst for highly selective acetalization of biomass-derived furfural[J]. Chinese J. Inorg. Chem., 2021,37(11):2092-2100.  

    40. [40]

      Pan Y, Ding Q J, Li B H, Wang X X, Liu Y W, Chen J H, Ke F, Liu J Q. Self-adjusted bimetallic zeolitic-imidazolate framework-derived hierarchical magnetic carbon composites as efficient adsorbent for optimizing drug contaminant removal[J]. Chemosphere, 2021,263128101. doi: 10.1016/j.chemosphere.2020.128101

    41. [41]

      Mandal A, Ganguly S, Mukherjee S, Das D. Green synthesis of nanoscale cobalt(Ⅱ)-based MOFs: Highly efficient photo-induced green catalysts for the degradation of industrially used dyes[J]. Dalton Trans., 2019,48:13869-13879. doi: 10.1039/C9DT02394A

    42. [42]

      Zou C, Zhang Z, Xu X, Gong Q, Li J, Wu C D. A multifunctional organic-inorganic hybrid structure based on Mn-porphyrin and polyoxometalate as a highly effective dye scavenger and heterogenous catalyst[J]. J. Am. Chem. Soc., 2012,134:87-90. doi: 10.1021/ja209196t

    43. [43]

      Ma D Y, Guo H F, Dong J, Xu J. Exploration of electrolytes for Zn anode rechargeable batteries: Room temperature ionic liquids as major or supporting components[J]. J. Mol. Struct., 2013,1054:46-52.

    44. [44]

      Wu Y, Kang W Y, Wang X X, Tan X L, Wang L F, Xie B T, Li B H. Series of new coordination polymers based flexible tricarboxylate as photocatalysts for RhB dye degradation[J]. J. Solid State Chem., 2021,300122233. doi: 10.1016/j.jssc.2021.122233

    45. [45]

      Wang H, Zhang X Y, Bi C F, Fan Y H, Meng X M. Synthesis, crystal structures and photocatalytic properties of Zn(Ⅱ), Ni(Ⅱ), Co(Ⅱ) complexes with a symmetric open-chain N2O4-donor bis-schiff base ligand[J]. Transit. Met. Chem., 2015,40:769-777. doi: 10.1007/s11243-015-9975-5

    46. [46]

      Ye C P, Ling R, Yang L F, Zhang Q, Han J, Chen X D. Syntheses, crystal structures and photocatalytic properties of transition metal complexes based on 9, 10-anthraquinone-1, 3-dicarboxylate[J]. Transit. Met. Chem., 2019,44:475-482. doi: 10.1007/s11243-019-00334-2

    47. [47]

      Mukherjee S, Patel B A, Bhaduri S. Selective ethylene oligomerization with nickel oxime complexes[J]. Organometallics, 2009,28:3074-3078. doi: 10.1021/om900080h

    48. [48]

      LI G L, WANG M M, TANG X X, ZHANG R, NI Z H. Synthesis, crystal structure, and magnetic properties of a cyanide-bridged Fe4Ni2 hexa-nuclear complex based on tricyanideferrate(Ⅲ)[J]. Chinese J. Inorg. Chem., 2023,39(8):1564-1570.  

    49. [49]

      Zong Z A, Fan C B, Zhang X, Meng X M, Jin F, Fan Y H. Four Co(Ⅱ) coordination polymers based on 4,4'-(1H-1,2,4-triazol-1-yl)methylenebis(benzoic acid): Syntheses, structural diversity, magnetic properties, dye adsorption and photocatalytic properties[J]. CrystEngComm, 2019,21(4):673-686. doi: 10.1039/C8CE01203B

    50. [50]

      Wu B, Zhang W H, Ren Z G, Lang J P. A 1D anionic coordination polymer showing superior congo red sorption and its dye composite exhibiting remarkably enhanced photocurrent response[J]. Chem. Commun., 2015,51(80):14893-14896. doi: 10.1039/C5CC05990A

    51. [51]

      Zhang J Y, Xing Y Y, Wang Q W, Zhang N, Deng W, Gao E Q. Two new Cu compounds with zwitterionic tetrazolate ligand: In situ synthesis, crystal structures, luminescence and photocatalytic properties[J]. J. Solid State Chem., 2015,232:19-25. doi: 10.1016/j.jssc.2015.08.030

    52. [52]

      Cheng H J, Tang H X, Shen Y L, Xia N N, Yin W Y, Zhu W, Tang X Y, Ma Y S, Yuan R X. Carboxylate ligands induced structural diversity of zinc(Ⅱ) coordination polymers based on 3, 6-bis(imidazol-1-yl)carbazole: Syntheses, structures and photocatalytic properties[J]. J. Solid State Chem., 2015,232:200-206. doi: 10.1016/j.jssc.2015.09.027

    53. [53]

      Yin W Y, Huang Z L, Tang X Y, Wang J, Cheng H J, Ma Y S, Yuan R X, Liu D. Structural diversification and photocatalytic properties of zinc(Ⅱ) polymers modified by auxiliary N-containing ligands[J]. New J. Chem., 2015,39(9):7130-7139. doi: 10.1039/C5NJ01005E

    54. [54]

      Fan C B, Meng X M, Fan Y H, Zong Z A, Zhang X Y, Bi C F. Two 3D Zn metal-organic frameworks with 3- and 8-fold interpenetration: Syntheses, structures, photodegradation, and photoluminescent properties[J]. Aust. J. Chem., 2016,70(3):314-321.

    55. [55]

      Etaiw S E H, Abd El-Aziz D M, Marie H, Ali E. Cd(Ⅱ) and holodirected lead(Ⅱ) 3D-supramolecular coordination polymers based on nicotinic acid: Structure, fluorescence property and photocatalytic activity[J]. Solid State Sci., 2018,79:15-22. doi: 10.1016/j.solidstatesciences.2018.03.004

    56. [56]

      Han L J, Kong Y J, Yan T J, Fan L T, Zhang Q, Zhao H J, Zheng H G. A new five-coordinated copper compound for efficient degradation of methyl orange and Congo red in the absence of UV-visible radiation[J]. Dalton Trans., 2016,45(46):18566-18571. doi: 10.1039/C6DT03273G

    57. [57]

      Qin L, Chen H Z, Lei J, Wang Y Q, Ye T Q, Zheng H G. Photodegradation of some organic dyes over two metal-organic frameworks with especially high efficiency for safranine T[J]. Cryst. Growth Des., 2017,17(3):1293-1298. doi: 10.1021/acs.cgd.6b01690

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    3. [3]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    8. [8]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    9. [9]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    10. [10]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    16. [16]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    17. [17]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    18. [18]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    19. [19]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    20. [20]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

Metrics
  • PDF Downloads(2)
  • Abstract views(342)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return