Citation: Hong-Jian LI, Jun GU, Xiao-Fei SHI, Fu-Liang LIU, Xiao-Tao CHEN. High CO-tolerant intermetallic PtBi nanoplates for methanol electrooxidation[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2074-2082. doi: 10.11862/CJIC.2023.185 shu

High CO-tolerant intermetallic PtBi nanoplates for methanol electrooxidation

  • Corresponding author: Hong-Jian LI, 18380235038@163.com
  • Received Date: 23 April 2023
    Revised Date: 17 October 2023

Figures(8)

  • We prepared an intermetallic PtBi nanoplate with high CO tolerance by thermal injection. The prepared intermetallic PtBi nanoplates showed excellent catalytic performance and stability for methanol oxidation reaction (MOR). The peak mass activity was up to 4.09 A·mgPt-1, which was nearly 3.2 times that of commercial Pt/C. After the current-time (I-t) stability test, the property decreased by only 5.7%, much lower than commercial Pt/C. CO-Stripping curves and evolution of cyclic voltammetric (CV-Evolution) curves confirmed high CO tolerance of inter-metallic PtBi nanoplates.
  • 加载中
    1. [1]

      CHANG L Y, WANG R Z. Research progress and design strategy of membrane electrode assembly for high-performance proton exchange membrane fuel cell[J]. Journal of Beijing University of Technology, 2022,43(3):345-354.  

    2. [2]

      Bu L Z, Liang J S, Ning F D, Huang J, Huang B L, Sun M Z, Zhan C H, Ma Y H, Zhou X C, Li Q, Huang X Q. Low-coordination trimetallic PtFeCo nanosaws for practical fuel cells[J]. Adv. Mater., 2023,35(11)2208672. doi: 10.1002/adma.202208672

    3. [3]

      Wang X P, Xi S B, Lee W S V, Huang P R, Cui P, Zhao L, Hao W C, Zhao X S, Wang Z B, Wu H J, Wang H, Diao C Z, Borgna A, Du Y H, Yu Z G, Pennycook S, Xue J M. Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon[J]. Nat. Commun., 2020,11(1)4647. doi: 10.1038/s41467-020-18459-9

    4. [4]

      Chen X T, Granda-Marulanda L P, McCrum I T, Koper M T M. How palladium inhibits CO poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction[J]. Nat. Commun., 2022,13(1)38. doi: 10.1038/s41467-021-27793-5

    5. [5]

      Bao Y F, Liu H, Liu Z, Wang F L, Feng L G. Pd/FeP catalyst engineering via thermal annealing for improved formic acid electrochemical oxidation[J]. Appl. Catal. B-Environ., 2020,274119106. doi: 10.1016/j.apcatb.2020.119106

    6. [6]

      Tian X L, Lu X F, Xia B Y, Lou X W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies[J]. Joule, 2020,4(1):45-68. doi: 10.1016/j.joule.2019.12.014

    7. [7]

      Chang J F, Wang G Z, Li C, He Y Q, Zhu Y M, Zhang W, Sajid M, Kara A, Gu M, Yang Y. Rational design of septenary high-entropy alloy for direct ethanol fuel cells[J]. Joule, 2023,7(3):587-602. doi: 10.1016/j.joule.2023.02.011

    8. [8]

      Wang K L, Huang D Y, Guan Y C, Liu F, He J, Ding Y. Fine-tuning the electronic structure of dealloyed PtCu nanowires for efficient methanol oxidation reaction[J]. ACS Catal., 2021,11(23):14428-14438. doi: 10.1021/acscatal.1c04424

    9. [9]

      Chen S P, Li M F, Gao M Y, Jin J B, van Spronsen M A, Salmeron M B, Yang P D. High-performance Pt-Co nanoframes for fuel-cell electrocatalysis[J]. Nano Lett., 2020,20(3):1974-1979. doi: 10.1021/acs.nanolett.9b05251

    10. [10]

      Zhang S, Zeng Z C, Li Q Q, Huang B L, Zhang X Y, Du Y P, Yan C H. Lanthanide electronic perturbation in Pt-Ln (La, Ce, Pr and Nd) alloys for enhanced methanol oxidation reaction activity[J]. Energy Environ. Sci., 2021,14(11):5911-5918. doi: 10.1039/D1EE02433G

    11. [11]

      Xia T Y, Zhao K, Zhu Y Q, Bai X Y, Gao H, Wang Z Y, Gong Y, Feng M L, Li S F, Zheng Q, Wang S G, Wang R M, Guo H Z. Mixed-dimensional Pt-Ni alloy polyhedral nanochains as bifunctional electrocatalysts for direct methanol fuel cells[J]. Adv. Mater., 2023,35(2)2206508. doi: 10.1002/adma.202206508

    12. [12]

      Shen T, Gong M X, Xiao D D, Shang T T, Zhao X, Zhang J, Wang D L. Engineering location and supports of atomically ordered L10-PdFe intermetallics for ultra-anticorrosion electrocatalysis[J]. Adv. Funct. Mater., 2022,32(35)2203921. doi: 10.1002/adfm.202203921

    13. [13]

      Zhao T H, Wang G J, Gong M X, Xiao D D, Chen Y, Shen T, Lu Y, Zhang J, Xin H L, Li Q, Wang D L. Self-optimized ligand effect in L12-PtPdFe intermetallic for efficient and stable alkaline hydrogen oxidation reaction[J]. ACS Catal., 2020,10(24):15207-15216. doi: 10.1021/acscatal.0c03938

    14. [14]

      Wang X C, Liu Y, Ma X Y, Chang L Y, Zhong Q X, Pan Q, Wang Z Q, Yuan X L, Cao M H, Lyu F L, Yang Y Y, Chen J X, Sham T K, Zhang Q. The role of bismuth in suppressing the CO poisoning in alkaline methanol electrooxidation: Switching the reaction from the CO to formate pathway[J]. Nano Lett., 2023,23(2):685-693. doi: 10.1021/acs.nanolett.2c04568

    15. [15]

      Chen Y J, Pei J J, Chen Z, Li A, Ji S F, Rong H P, Xu Q, Wang T, Zhang A J, Tang H L, Zhu J F, Han X D, Zhuang Z B, Zhou G, Wang D S. Pt atomic layers with tensile strain and rich defects boost ethanol electrooxidation[J]. Nano Lett., 2022,22(18):7563-7571. doi: 10.1021/acs.nanolett.2c02572

    16. [16]

      Wu X Q, Jiang Y, Yan Y C, Li X, Luo S, Huang J B, Li J J, Shen R, Yang D R, Zhang H. Tuning surface structure of Pd3Pb/PtnPb nano-crystals for boosting the methanol oxidation reaction[J]. Adv. Sci., 2019,6(24)1902249. doi: 10.1002/advs.201902249

    17. [17]

      Shen T, Wang S, Zhao T H, Hu Y Z, Wang D L. Recent advances of single-atom-alloy for energy electrocatalysis[J]. Adv. Energy Mater., 2022,12(39)2201823. doi: 10.1002/aenm.202201823

    18. [18]

      Ji X L, Lee K T, Holden R, Zhang L, Zhang J J, Botton G A, Couillard M, Nazar L F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes[J]. Nat. Chem., 2010,2(4):286-293. doi: 10.1038/nchem.553

    19. [19]

      Casado-Rivera E, Volpe D J, Alden L, Lind C, Downie C, Vázquez-Alvarez T, Angelo A C D, DiSalvo F J, Abruña H D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications[J]. J. Am. Chem. Soc., 2004,126(12):4043-4049. doi: 10.1021/ja038497a

    20. [20]

      Liu Y C, Li X H, Shi Y, Wang Y J, Zhao X J, Gong X Y, Cai R, Song G S, Chen M, Zhang X B. Two-dimensional intermetallic PtBi/Pt core/shell nanoplates overcome tumor hypoxia for enhanced cancer therapy[J]. Nanoscale, 2021,13(33):14245-14253. doi: 10.1039/D1NR02561A

    21. [21]

      Luo S P, Chen W, Cheng Y, Song X, Wu Q L, Li L X, Wu X T, Wu T H, Li M R, Yang Q, Deng K R, Quan Z W. Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation[J]. Adv. Mater., 2019,31(40)1903683. doi: 10.1002/adma.201903683

    22. [22]

      Yang S, Lee H. Atomically dispersed platinum on gold nano-octahedra with high catalytic activity on formic acid oxidation[J]. ACS Catal., 2013,3(3):437-443. doi: 10.1021/cs300809j

    23. [23]

      Huang W J, Wang H T, Zhou J G, Wang J, Duchesne P N, Muir D, Zhang P, Han N, Zhao F P, Zeng M, Zhong J, Jin C H, Li Y G, Lee S T, Dai H J. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene[J]. Nat. Commun., 2015,610035. doi: 10.1038/ncomms10035

    24. [24]

      Chen G J, Dai Z F, Sun L, Zhang L, Liu S, Bao H W, Bi J L, Yang S C, Ma F. Synergistic effects of platinum-cerium carbonate hydroxides-reduced graphene oxide on enhanced durability for methanol electro-oxidation[J]. J. Mater. Chem. A, 2019,7(11):6562-6571. doi: 10.1039/C9TA00226J

    25. [25]

      Zhang W Q, Yang J Z, Lu X M. Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids[J]. ACS Nano, 2012,6(8):7397-7405. doi: 10.1021/nn302590k

    26. [26]

      Ren F F, Wang C Q, Zhai C Y, Jiang F X, Yue R R, Du Y K, Yang P, Xu J K. One-pot synthesis of a RGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium[J]. J. Mater. Chem. A, 2013,1(24):7255-7261. doi: 10.1039/c3ta11291h

    27. [27]

      Zhang Z C, Luo Z M, Chen B, Wei C, Zhao J, Chen J Z, Zhang X, Lai Z C, Fan Z X, Tan C L, Zhao M T, Lu Q P, Li B, Zong Y, Yan C C, Wang G X, Xu Z C J, Zhang H. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation[J]. Adv. Mater., 2016,28(39):8712-8717. doi: 10.1002/adma.201603075

    28. [28]

      Lou Y, Li C G, Gao X D, Bai T Y, Chen C L, Huang H, Liang C, Shi Z, Feng S H. Porous Pt nanotubes with high methanol oxidation electrocatalytic activity based on original bamboo-shaped Te nanotubes[J]. ACS Appl. Mater. Interfaces, 2016,8(25):16147-16153. doi: 10.1021/acsami.6b05350

    29. [29]

      Qi Z Y, Xiao C X, Liu C, Goh T W, Zhou L, Maligal-Ganesh R, Pei Y C, Li X L, Curtiss L A, Huang W Y. Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction[J]. J. Am. Chem. Soc., 2017,139(13):4762-4768. doi: 10.1021/jacs.6b12780

    30. [30]

      Guo K, Liu Y, Han M, Xu D D, Bao J C. Highly branched ultrathin Pt-Ru nanodendrites[J]. Chem. Commun., 2019,55(74):11131-11134. doi: 10.1039/C9CC05686F

    31. [31]

      Lu S Q, Li H M, Sun J Y, Zhuang Z B. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles[J]. Nano Res., 2018,11(4):2058-2068. doi: 10.1007/s12274-017-1822-x

    32. [32]

      Liu G G, Zhou W, Ji Y R, Chen B, Fu G T, Yun Q B, Chen S M, Lin Y X, Yin P F, Cui X Y, Liu J W, Meng F Q, Zhang Q H, Song L, Gu L, Zhang H. Hydrogen-intercalation-induced lattice expansion of Pd@Pt core-shell nanoparticles for highly efficient electrocatalytic alcohol oxidation[J]. J. Am. Chem. Soc., 2021,143(29):11262-11270. doi: 10.1021/jacs.1c05856

    33. [33]

      Chen L, Zhou L Z, Lu H B, Zhou Y Q, Huang J L, Wang J, Wang Y, Yuan X L, Yao Y. Shape-controlled synthesis of planar PtPb nano-plates for highly efficient methanol electro-oxidation reaction[J]. Chem. Commun., 2020,56(64):9138-9141. doi: 10.1039/D0CC03704D

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    6. [6]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    7. [7]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    10. [10]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    13. [13]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

Metrics
  • PDF Downloads(9)
  • Abstract views(511)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return