Citation: Rui FENG, Jia-Ming SHEN, Bao LIU, Tian-Bo LI, Xiao-Yan HU, Xin-Long YAN, Zhong-Dong ZHANG. Synthesis of ZSM-5 zeolites with low silica-to-alumina ratio and its performance in the cracking of n-heptane[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(11): 2042-2054. doi: 10.11862/CJIC.2023.183 shu

Synthesis of ZSM-5 zeolites with low silica-to-alumina ratio and its performance in the cracking of n-heptane

Figures(13)

  • ZSM-5 zeolites with low silica-to-alumina ratios were hydrothermally synthesized by adding NH4+ cation and using ammonia as mineralizer. The effects of Si source, Al source, mineralizer, and cation on the physiochemical properties of the prepared ZSM-5 zeolites were investigated. The crystallinity, crystal size, and silica-to-alumina ratio of zeolites were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), solid state nuclear magnetic resonance (MAS-NMR), etc. The effect of silica-to-alumina ratio on the catalytic cracking of n-heptane was also studied. The results demonstrate that the lower the silica-to-alumina ratio feeding, the harder it is for Al atoms to insert into zeolite framework. Hydrogen-form ZSM-5 zeolites with low framework silica-to-alumina ratios could be synthesized with ammonia as mineralizer and tetraethyl orthosilicate as Si source. The addition of NH4+ cation enhanced the insertion of Al atom and the framework silica-to-alumina ratio of ZSM-5 further decreased to 24.2. The results of n-heptane cracking showed that the conversion of n-heptane was improved with decreasing the framework silica-to-alumina ratio of ZSM-5 zeolites, however, the selectivity of light olefins was decreased.
  • 加载中
    1. [1]

      Tian P, Wei Y X, Ye M, Liu Z M. Methanol to olefins (MTO): From fundamentals to commercialization[J]. ACS Catal., 2015,5(3):1922-1938. doi: 10.1021/acscatal.5b00007

    2. [2]

      SONG S T, LI T S, JU Y N, LI Y, WU P, SUN C Y, DUAN A J. Effect of La/ZSM-5 zeolites with different SiO2/Al2O3 ratios on the isomerization/aromatization performance of FCC light gasoline[J]. Acta Petrolei Sinca (Petroleum Processing Section), 2022,3:1-18.  

    3. [3]

      Alipour S M. Recent advances in naphtha catalytic cracking by nano ZSM-5:A review[J]. Chinese J. Catal., 2016,37(005):671-680. doi: 10.1016/S1872-2067(15)61091-9

    4. [4]

      Blay V, Benoit L, Miravalles , Ruben M, Toshiyuki Y, Ken A P, Clough , Melissa L, Bilge Y. Engineering zeolites for catalytic cracking to light olefins[J]. ACS Catal., 2017,7(10):6542-6566. doi: 10.1021/acscatal.7b02011

    5. [5]

      HOU H D, ZHANG S H, DAI Z Y, CUI D C, LI R. Catalytic pyrolysis of different hydrocarbons for light olefins[J]. Acta Petrolei Sinca (Petroleum Processing Section), 2009,25(5):619-624.  

    6. [6]

      WEI X L, MAO A G, ZHANG J S, LONG J. Study on reaction characteristics and influence factors of naphtha catalytic cracking[J]. China Petroleum Processing Petrochemical Technology, 2013,44(7):1-6.  

    7. [7]

      Abdalla A, Arudra P, Al-Khattaf S S. Catalytic cracking of 1-butene to propylene using modified H-ZSM-5 catalyst: A comparative study of surface modification and core-shell synthesis[J]. Appl. Catal. A-Gen., 2017,533:109-120. doi: 10.1016/j.apcata.2017.01.003

    8. [8]

      WANG Y H, SUN H M, PENG P, BAI P, YAN Z F, FAZLE S, JI S F. Synthesis of hierarchical ZSM-5 zeolites via two stage varying temperature crystallization with enhanced catalytic cracking performanc[J]. Chinese J. Inorg. Chem., 2018,34(5):989-996. doi: 10.11862/CJIC.2018.124

    9. [9]

      BAI Y E, ZHANG B R, LIU D Y, ZHAO L, GAO J S, XU C M. Influence of synergistic effect of acid properties and pore structure of ZSM-5 zeolite on the catalytic cracking performance of pentene[J]. CIESC J., 2023,74(1):438-448.  

    10. [10]

      Liang T Y, Chen J L, Qin Z F, Li J F, Wang P F, Wang S, Wang G F, Dong M, Fan W B, Wang J G. Conversion of methanol to olefins over H-ZSM-5 zeolite: Reaction pathway is related to the framework aluminum siting[J]. ACS Catal., 2016,6(11):7311-7325. doi: 10.1021/acscatal.6b01771

    11. [11]

      Rahimi N, Karimzadeh R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review[J]. Appl. Catal. A-Gen., 2011,398(1/2):1-17.

    12. [12]

      HAN L, OUYANG Y, LUO Y B, DA Z J. Application of modified ZSM-5 zeolite with different elements in catalytic cracking of light hydrocarbon[J]. Acta Petrolei Sinca (Petroleum Processing Section), 2018,34(2):419-429.  

    13. [13]

      XU Y H, ZUO Y F, OUYANG Y, WANG P, LUO Y B. Development and industrail practice of heavy oil catalytic cracking process over mesoporous zeolite for low coking, low energy consumption and high olefin yield[J]. China Petroleum Processing Petrochemical Technology, 2022,53(8):1-10.  

    14. [14]

      Shen D K, Zhao J, Xiao R, Gu S. Production of aromatic monomers from catalytic pyrolysis of black-liquor lignin[J]. J. Anal. Appl. Pyrol., 2015,111:47-54. doi: 10.1016/j.jaap.2014.12.013

    15. [15]

      Rodaum C, Thivasasith A, Suttipat D, Witoon T, Pengpanich S, Wattanakit C. Modified acid-base ZSM-5 derived from core-shell ZSM-5@aqueous miscible organic-layered double hydroxides for catalytic cracking of n-pentane to light olefins[J]. ChemCatChem, 2020,12(17):4288-4296. doi: 10.1002/cctc.202000860

    16. [16]

      Hao J, Cheng D G, Chen F Q, Zhan X L. n-Heptane catalytic cracking on ZSM-5 zeolite nanosheets: Effect of nanosheet thickness[J]. Microporous Mesoporous Mater., 2021,310110647. doi: 10.1016/j.micromeso.2020.110647

    17. [17]

      Kim S D, Noh S H, Seong K H, Kim W J. Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring[J]. Microporous Mesoporous Mater., 2004,72(1):185-192.

    18. [18]

      Zang Y H, Dong X F, Ping D, Geng J M, Dang H F. Green routes for the synthesis of hierarchical HZSM-5 zeolites with low SiO2/Al2O3 ratios for enhanced catalytic performance[J]. Catal. Commun., 2018,113:51-54. doi: 10.1016/j.catcom.2018.05.018

    19. [19]

      LIU H D, WANG B D, ZHANG Z H, MENG C G, SUN Q. Synthesis of ultra-low silica & hierarchical porous ZSM-5 in template-free hydrothermal system[J]. Chinese Journal of Synthetic Chemistry, 2017,25(6):503-509.  

    20. [20]

      Ali B J B M A, Thomas W J. Synthesis, characterization and catalytic activity of ZSM-5 zeolites having variable silicon-to-aluminum ratios[J]. Appl. Catal. A-Gen., 2003,252(1):149-162.

    21. [21]

      Chen Y H, Han D M, Cui H X, Zhang Q. Synthesis of ZSM-5 via organotemplate-free and dry gel conversion method: Investigating the effects of experimental parameters[J]. J. Solid State Chem., 2019,279120969.

    22. [22]

      Wang Y, Li S, Liu Y C, Zheng J J, Sun X B, Du Y Z, Liu Z P, Qin B, Li W L, Wang G S, Pan M, Li R F. Hierarchical ZSM-5 zeolite fabricated with loosely nanocrystallite aggregates without secondary template[J]. Ind. Eng. Chem. Res., 2022,61(25):9136-9148.

    23. [23]

      Zhou J, Teng J W, Ren L P, Wang Y Y, Liu Z C, Liu W, Yang W M, Xie Z K. Full-crystalline hierarchical monolithic ZSM-5 zeolites as superiorly active and long-lived practical catalysts in methanol-to-hydrocarbons reaction[J]. J. Catal., 2016,340:166-176.

    24. [24]

      Feng R, Yan X L, Hu X Y, Wang Y, Li Z, Hou K, Lin J W. Hierarchical ZSM-5 zeolite designed by combining desilication and dealumination with related study of n-heptane cracking performance[J]. J. Porous Mater., 2018,25(6):1743-1756.

    25. [25]

      Jesudoss S K, Vijaya J J, Kaviyarasu K, Kennedy L J, Jothi Ramalingam R, Al-Lohedan H A. Anti-cancer activity of hierarchical ZSM-5 zeolites synthesized from rice-based waste materials[J]. RSC Adv., 2018,8(1):481-490.

    26. [26]

      Sanhoob M A, Shafei E N, Khan A, Nasser G A, Bakare I, Muraza O, Al-Bahar M Z, Al-Jishi A N, Al-Badairy H H, Ummer A C. Catalytic cracking of n-dodecane to chemicals: Effect of variable-morphological ZSM-5 zeolites synthesized using various silica sources[J]. ACS Omega, 2022,7(12):10317-10329.

    27. [27]

      Wang S, Wang P F, Qin Z F, Chen Y Y, Dong M, Li J F, Zhang K, Liu P, Wang J G, Fan W B. Relation of catalytic performance to the aluminum siting of acidic zeolites in the conversion of methanol to olefins, viewed via a comparison between ZSM-5 and ZSM-11[J]. ACS Catal., 2018,8(6):5485-5505.

    28. [28]

      Zhu X C, Wu L L, Magusin P C M M, Mezari B, Hensen E J M. On the synthesis of highly acidic nanolayered ZSM-5[J]. J. Catal., 2015,327:10-21.

    29. [29]

      Feng R, Zhou P, Liu B, Yan X L, Hu X Y, Zhou M. Direct synthesis of HZSM-5 zeolites with enhanced catalytic performance in the methanol-to-propylene reaction[J]. Catal. Today, 2022,405-406:299-308.

    30. [30]

      Marcus Y I. Introduction to liquid state chemistry. London, New York, Sydney and Toronto: John Wiley & Sons, 1977: 136-161

    31. [31]

      XIN Q. Research methods of solid catalysts. Beijing: Science Press, 2004: 433-464

    32. [32]

      Sha Y C, Han L, Wang R Y, Wang P, Song H T. Tailoring ZSM-5 zeolite through metal incorporation: Toward enhanced light olefins production via catalytic cracking: A minireview[J]. J. Ind. Eng. Chem., 2023. doi: 10.1016/j.jiec.2023.06.004

    33. [33]

      CUI T, LIU M, LI J J, GUO X W. Catalytic performance of zinc modified thin sheet ZSM-5 molecular sieve in methanol to aromatics[J]. Acta Petrolei Sinca (Petroleum Processing Section), 2020,36(3):460-467.  

    34. [34]

      Xiao X, Sun B, Wang P, Fan X Q, Kong L, Xie Z A, Liu B N, Zhao Z. Tuning the density of Brønsted acid sites on mesoporous ZSM-5 zeolite for enhancing light olefins selectivity in the catalytic cracking of n-octane[J]. Microporous Mesoporous Mater., 2022,330111621.

    35. [35]

      Hou X, Qiu Y, Yuan E X, Li F Q, Li Z Z, Ji S, Yang Z N, Liu G Z, Zhang X W. Promotion on light olefins production through modulating the reaction pathways for n-pentane catalytic cracking over ZSM-5 based catalysts[J]. Appl. Catal. A-Gen., 2017,543:51-60.

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    7. [7]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    8. [8]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    9. [9]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    12. [12]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    15. [15]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    16. [16]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    19. [19]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(19)
  • Abstract views(844)
  • HTML views(167)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return